K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

1) a) \(\sqrt{27}\) + \(\sqrt{75}\) - \(\sqrt{\dfrac{1}{3}}\) = \(3\sqrt{3}\) + \(5\sqrt{3}\) - \(\dfrac{\sqrt{3}}{3}\) = \(8\sqrt{3}\) - \(\dfrac{\sqrt{3}}{3}\)

= \(\dfrac{23\sqrt{3}}{3}\)

b) \(\sqrt{4+2\sqrt{3}}\) \(-\sqrt{4-2\sqrt{3}}\)

= \(\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\) \(-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)

= \(\sqrt{\left(\sqrt{3}+1\right)^2}\) \(-\sqrt{\left(\sqrt{3}-1\right)^2}\)

= \(\left(\sqrt{3}+1\right)\) \(-\left(\sqrt{3}-1\right)\)

= \(\sqrt{3}+1-\sqrt{3}+1\)

= 2

7 tháng 6 2017

2) \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\) : \(\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\) : \(\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

= \(\left(\dfrac{a-1}{\left(\sqrt{a}-1\right)\sqrt{a}}\right)\) : \(\left(\dfrac{\left(\sqrt{a}-1\right)+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

= \(\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right)\) : \(\left(\dfrac{\left(\sqrt{a}-1\right)+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

= \(\dfrac{\sqrt{a}+1}{\sqrt{a}}\) : \(\dfrac{2}{\sqrt{a}+1}\) = \(\dfrac{\sqrt{a}+1}{\sqrt{a}}\) . \(\dfrac{\sqrt{a}+1}{2}\) = \(\dfrac{\left(\sqrt{a}+1\right)^2}{2\sqrt{a}}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:ĐK: $a\geq 0; a\neq 9; a\neq 4$

a) 

\(A=\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{\sqrt{a}-3}\)

\(\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{(\sqrt{a}+3)(\sqrt{a}-3)}{(\sqrt{a}-2)(\sqrt{a}-3)}+\frac{(2\sqrt{a}+1)(\ \sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}\)

\(=\frac{2\sqrt{a}-9-(a-9)+(2a-3\sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{a-\sqrt{a}-2}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)

b) Để \(A< 1\Leftrightarrow \frac{\sqrt{a}+1}{\sqrt{a}-3}<1\Leftrightarrow 1+\frac{4}{\sqrt{a}-3}<1\)

\(\Leftrightarrow \frac{4}{\sqrt{a}-3}< 0\Leftrightarrow \sqrt{a}-3< 0\Leftrightarrow 0\leq a< 9\)

Kết hợp ĐKXĐ: suy ra $0\leq a< 9; a\neq 4$

c) Với $a$ nguyên,  \(A=1+\frac{4}{\sqrt{a}-3}\in\mathbb{Z}\Leftrightarrow 4\vdots \sqrt{a}-3\)

$\Rightarrow \sqrt{a}-3\in\left\{\pm 1; \pm 2;\pm 4\right\}$

$\Rightarrow a\in\left\{4;16; 1;25; 49\right\}$

Kết hợp ĐKXĐ suy ra $a\in\left\{16;1;25;49\right\}$

 

ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{4;9\right\}\end{matrix}\right.\)

a) Ta có: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

\(=\dfrac{\left(2\sqrt{a}-9\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}+\dfrac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{2\sqrt{a}-9-\left(a-9\right)+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2a-\sqrt{a}-11-a+9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-2\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)+\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

b) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-\dfrac{\sqrt{a}-3}{\sqrt{a}-3}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)

\(\Leftrightarrow\dfrac{4}{\sqrt{a}-3}< 0\)

mà 4>0

nên \(\sqrt{a}-3< 0\)

\(\Leftrightarrow\sqrt{a}< 3\)

hay a<9

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)

Vậy: Để A<1 thì \(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)

c) Để A nguyên thì \(\sqrt{a}+1⋮\sqrt{a}-3\)

\(\Leftrightarrow\sqrt{a}-3+4⋮\sqrt{a}-3\)

mà \(\sqrt{a}-3⋮\sqrt{a}-3\)

nên \(4⋮\sqrt{a}-3\)

\(\Leftrightarrow\sqrt{a}-3\inƯ\left(4\right)\)

\(\Leftrightarrow\sqrt{a}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

mà \(\sqrt{a}-3\ge-3\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-3\in\left\{1;-1;2;-2;4\right\}\)

\(\Leftrightarrow\sqrt{a}\in\left\{4;2;5;1;7\right\}\)

\(\Leftrightarrow a\in\left\{16;4;25;1;49\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;16;25;49\right\}\)

Vậy: Để A nguyên thì \(a\in\left\{1;16;25;49\right\}\)

28 tháng 10 2021

\(\sqrt{16-2\sqrt{55}}=\sqrt{11}-\sqrt{5}\)

=>a=11; b=5

=>a-b=6

21 tháng 7 2018

cảm ơn bn ạ

28 tháng 6 2019

a) ĐKXĐ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\\x\ne9\end{matrix}\right.\)

\(A=\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)

b)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\sqrt{3}\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-\sqrt{3}=0\\ \Leftrightarrow\frac{\sqrt{x}+2-\sqrt{3}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=0\\ \Leftrightarrow\frac{\sqrt{x}+2-\sqrt{3x}+3\sqrt{3}}{\sqrt{x}-3}=0\\ \Leftrightarrow\sqrt{x}+2-\sqrt{3x}+3\sqrt{3}=0\)

(Bạn thử tìm x đi nha, mk ra số xấu lắm TvT)

c)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)

Để A nhận giá trị nguyên thì \(5⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)\)

Ta có bảng sau:

\(\sqrt{x}-3\) 1 -1 5 -5
\(\sqrt{x}\) 4 2 8 -2
\(x\) 16 4 64 loại

Vậy với x=16; x=4 và x=64 thì A nhận giá trị nguyên

28 tháng 10 2021

\(\sqrt{11-2\sqrt{18}}=3-\sqrt{2}\)

=> a=3; b=-1

6 tháng 8 2016

\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)

\(=\sqrt{2}-1-2\sqrt{3}=a+b\sqrt{2}+c\sqrt{3}\) (*)

Nhìn vào (*) ta dễ dàng thấy

\(-2\sqrt{3}=c\sqrt{3}\rightarrow c=-2\)

\(\sqrt{2}=b\sqrt{2}\rightarrow b=1\)

Và a=-1.Suy ra a+b+c=(-2)+1+(-1)=-2

 

 

30 tháng 11 2018

ĐK: x>0,x\(\ne4\)

a) Ta thay x=\(\dfrac{1}{4}\) vào \(A=\dfrac{6}{x+2\sqrt{x}}=\dfrac{6}{\dfrac{1}{4}+2\sqrt{\dfrac{1}{4}}}=\dfrac{6}{\dfrac{1}{4}+2.\dfrac{1}{2}}=\dfrac{6}{\dfrac{1}{4}+1}=6:\left(\dfrac{1}{4}+1\right)=6:\dfrac{5}{4}=6.\dfrac{4}{5}=\dfrac{24}{5}=4,8\)B=\(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{4-x}\)

b) Ta có M=\(\dfrac{A}{B}=A\div B=\dfrac{6}{x+2\sqrt{x}}\div\dfrac{6}{4-x}=\dfrac{6}{x+2\sqrt{x}}.\dfrac{4-x}{6}=\dfrac{4-x}{x+2\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2-\sqrt{x}}{\sqrt{x}}\)

Ta lại có M>1\(\Leftrightarrow\dfrac{2-\sqrt{x}}{\sqrt{x}}>1\Leftrightarrow2-\sqrt{x}>\sqrt{x}\Leftrightarrow2>2\sqrt{x}\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Kết hợp với ĐK

Vậy 0<x<1 thì M>1

c) Ta có M\(=\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}-1\)

Vậy để \(M\in Z\) thì \(\sqrt{x}\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}>0\)

Nên \(\sqrt{x}\in\left\{1;2\right\}\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy x=1 thì M\(\in Z\)

30 tháng 11 2018

Nguyễn Việt LâmTrầNguyễn Thị Khánh Như Trương NgọcThảo Vyn Trung NguyênBonkingsaint suppapong udomkaewkanjanaPhạm TiếnKHUÊ VŨMysterious PersonThiên Hàn