Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\)
suy ra a=11;b=5
suy ra a+b=11+5=16
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
=\(\sqrt{11}-\sqrt{5}\)
=> a=11 và b=5
=> a-b=6
1/ Ta có √(14 - 6√5) = √(9 - 6√5 +5) = 3 - √5
Từ đó a + b = 2
2/ Đề sai sửa lại là
√(15 - 6√6) = √(9 - 6√6 + 6) = (3 - √6)
Vậy a = 3; b = -1
=> a + b = 2
1.Nếu $\sqrt{55-6\sqrt{6}}=a+b\sqrt{6}$√55−6√6=a+b√6 với $a,b\in Z$a,b∈Z thì a-b=?
2. Nếu $\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=a+b\sqrt{6}$√15−6√6+√33−12√6=a+b√6 với $a,b\in Z$a,b∈Z thì a+b=?
Ta có $\sqrt{55-6\sqrt{6}}$ = $\sqrt{55-2.3.\sqrt{6}}$ = $\sqrt{55-2\sqrt{54}}$ = $\sqrt{\left(54^2\right)-2.54+1}$ = $\sqrt{\left(\sqrt{54}-1\right)^2}$ = $\sqrt{54-1}$ = $3\sqrt{6}$ -1
$\Rightarrow $ a=-1 và b=3
$\Rightarrow $ a-b=-1-3=-4
ta có : \(\sqrt{55-6\sqrt{6}}=\sqrt{55-2\sqrt{54}}\)
= \(\sqrt{54-2\sqrt{54.1}+1}=\sqrt{\left(\sqrt{54}-1\right)^2}\)
=\(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)
=>a=-1 và b=3
=> a-b=-1-3=-4
\(\sqrt{16-2\sqrt{55}}=\sqrt{11}-\sqrt{5}\)
=>a=11; b=5
=>a-b=6