Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\) (ĐKXĐ : \(x>-\frac{1}{3}\) )
\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\sqrt{x^2+1}-\left(3x+1\right)\)
\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\left(\sqrt{x^2+1}-1\right)\)
\(\Leftrightarrow x\left(3x-2\right)=\left(3x+1\right)\left(\frac{x^2+1-1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2\right)=x\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)
\(\Leftrightarrow x\left(3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x\approx1,2818\end{cases}}\)
Thử lại, ta có x = 0 thoả mãn nghiệm phương trình.
\(ĐK:x\in R\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\\ \Delta=\left(7x+1\right)^2-4\cdot2\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\ge0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{7x+1-5x+1}{4}\\t=\dfrac{7x+1+5x-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{2x+2}{4}=\dfrac{x+1}{2}\\t=\dfrac{12x}{4}=3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\dfrac{x+1}{2}\\\sqrt{x^2+3}=3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3=\dfrac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+11=0\\x^2=\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\Delta=4-132< 0\\\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{4}\\x=-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{\sqrt{6}}{4};\dfrac{\sqrt{6}}{4}\right\}\)