Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm Parabol (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Lời giải:
Ta có:
$y'=2x+b$
Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$
$\Leftrightarrow x_I=\frac{-b}{2}$
Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$
Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)
hay \(0=1+b+c(**)\)
Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$
Nếu $b=0\rightarrow c=-1$
Nếu $b=-4\rightarrow c=3$
Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$
Lời giải:
Ta có:
$y'=2x+b$
Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$
$\Leftrightarrow x_I=\frac{-b}{2}$
Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$
Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)
hay \(0=1+b+c(**)\)
Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$
Nếu $b=0\rightarrow c=-1$
Nếu $b=-4\rightarrow c=3$
Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$
Bài 2:
Ta có: \(\dfrac{-\text{Δ}}{4a}=-3\)
\(\Leftrightarrow-\text{Δ}=-12a\)
\(\Leftrightarrow b^2-4a=12a\)
\(\Leftrightarrow b^2-16a=0\left(1\right)\)
Thay x=-1 và y=6 vào (P), ta được:
\(a\cdot\left(-1\right)^2+b\left(-1\right)+1=6\)
\(\Leftrightarrow a-b=5\)
\(\Leftrightarrow a=b+5\)(2)
Thay (2) vào (1), ta được:
\(b^2-16\left(b+5\right)=0\)
\(\Leftrightarrow b^2-16b+64-144=0\)
\(\Leftrightarrow\left(b-8\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}b=20\\b=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=25\\a=1\end{matrix}\right.\)
Bài thiếu đề nhé, sửa đề thành c=0 cho dễ:
Ta có: \(\frac{-b^2+4ac}{4a}=-1\)\(\Rightarrow b^2=4a\)
Qua A(1;0)=>\(a+b=0\Leftrightarrow a=-b\)
Thay vào ta có:\(b^2=-4b\)\(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\b=-4;a=4\end{matrix}\right.\)
Vì là hàm bậc 2 nên y=4x^2-4x.
#Walker
Do ĐTHS qua A nên: \(1+b+c=0\Rightarrow c=-b-1\)
Tung độ đỉnh: \(\frac{4c-b^2}{4}=-1\Leftrightarrow c=\frac{b^2-4}{4}\)
\(\Rightarrow\frac{b^2-4}{4}=-b-1\Leftrightarrow b^2+4b=0\Rightarrow b=-4\)
\(\Rightarrow c=3\) \(\Rightarrow bc=-12\)