K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

y = 4x2 - 4x

(Nguyễn Văn Cụ Tổ)

8 tháng 9 2019

Bài thiếu đề nhé, sửa đề thành c=0 cho dễ:

Ta có: \(\frac{-b^2+4ac}{4a}=-1\)\(\Rightarrow b^2=4a\)

Qua A(1;0)=>\(a+b=0\Leftrightarrow a=-b\)

Thay vào ta có:\(b^2=-4b\)\(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\b=-4;a=4\end{matrix}\right.\)

Vì là hàm bậc 2 nên y=4x^2-4x.

#Walker

NV
11 tháng 3 2023

Từ điều kiện đề bài: (hiển nhiên a khác 0):

\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

4 tháng 9 2021

Tìm Parabol (P): y=ax2​+bx+c  đi qua điểm A(1;0) và có tung độ đỉnh bằng -1

18 tháng 12 2021

Theo đề, ta có: c=4

Theo đề, ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\-\dfrac{b^2}{16a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2+80a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-20\\b=40\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:

Ta có:

$y'=2x+b$

Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$

$\Leftrightarrow x_I=\frac{-b}{2}$

Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$

Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)

hay \(0=1+b+c(**)\)

Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$

Nếu $b=0\rightarrow c=-1$

Nếu $b=-4\rightarrow c=3$

Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:

Ta có:

$y'=2x+b$

Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$

$\Leftrightarrow x_I=\frac{-b}{2}$

Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$

Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)

hay \(0=1+b+c(**)\)

Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$

Nếu $b=0\rightarrow c=-1$

Nếu $b=-4\rightarrow c=3$

Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$

12 tháng 10 2020

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

6 tháng 9 2021

ca này khó

6 tháng 9 2021

pls help