Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=8/8=1
=>AD=3cm; CD=5cm
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
góc CBD=góc ABD
=>góc AID=góc ADI
=>ΔAID cân tại A
a) Do \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=\sqrt{100}=10\left(cm\right)\)
Do BD là phân giác của \(\Delta ABC\) áp dụng định lý đường phân giác trong tam giác ta có:
\(\dfrac{BA}{BC}=\dfrac{AD}{CD}\) hay \(\dfrac{6}{10}=\dfrac{AD}{CA-AD}\)
\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\)
\(\Leftrightarrow6\left(8-AD\right)=10AD\)
\(\Leftrightarrow48-6AD=10AD\)
\(\Leftrightarrow48=10AD+6AD\)
\(\Leftrightarrow48=16AD\)
\(\Leftrightarrow AD=\dfrac{48}{16}=3\left(cm\right)\)
+ HE là đường trung bình của ΔBCD
=> HE = 1/2* BD
=> HE = HA => ΔAHE cân tại H
\(\Rightarrow\widehat{AHE}=180^o-2\widehat{HAE}=180^o-\widehat{BAC}\)
+ HE // BD
\(\widehat{CBD}=\widehat{CHE}=90^o-\widehat{AHE}\)
\(=90^o-\left(180^o-\widehat{BAC}\right)=\widehat{BAC}-90^o\)
+ \(\widehat{ACB}=\widehat{ABC}=2\widehat{CBD}=2\widehat{BAC}-180^o\)
+ Xét ΔABC theo định lý tổng 3 góc của 1 Δ ta có :
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Rightarrow2\left(2\widehat{BAC}-180^o\right)+\widehat{BAC}=180^o\)
\(\Rightarrow5\widehat{BAC}=180^o+360^o=540^o\)
\(\Rightarrow\widehat{BAC}=108^o\)
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H co
góc B chung
=>ΔBAC đồng dạng với ΔBHA
b: Xét ΔBAD vuông tại A và ΔBHI vuông tạiH có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA*BI=BD*BH
c: góc AID=góc BIH=90 độ-góc HBI
góc ADI=90 độ-góc ABD
mà góc HBI=góc ABD
nên góc AID=góc ADI
=>ΔADI cân tại A
d: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
tính góc hay j????
Lấy K là trung điểm CD thì HK là đường trung bình \(\Delta\)BCD => HK // BD và HK=BD/2
Từ HK=BD/2 và AH=BD/2 => \(\Delta\)AHK cân tại H => ^HAK = ^HKA. Mà ^HKA = ^ADB (Do HK //BD)
Nên ^HAK = ^ADB = ^ABC/2 + ^ACB hay ^BAC/2 = ^ABC/2 + ^ACB
<=> ^BAC = ^ABC + 2^ACB. Từ đó ta có hệ: \(\hept{\begin{cases}\widehat{BAC}=\widehat{ABC}+2\widehat{ACB}\\\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^0\end{cases}}\)
Đến đây thì dễ rồi nhé !