Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\)
\(\Leftrightarrow3\left(x-1\right)=5\left(1-2x\right)\)
\(\Leftrightarrow3x-3=5-10x\)
\(\Leftrightarrow3x+10x=5+3\)
\(\Leftrightarrow13x=8\)
\(\Leftrightarrow x=\dfrac{8}{13}\)
Vậy ...
b/ \(\dfrac{3-\left|x\right|}{5}=1\dfrac{1}{2}:\dfrac{-6}{5}\)
\(\Leftrightarrow\dfrac{3-\left|x\right|}{5}=\dfrac{-5}{4}\)
\(\Leftrightarrow\left(3-\left|x\right|\right)4=5.\left(-5\right)\)
\(\Leftrightarrow\left(3-\left|x\right|\right).4=-25\)
\(\Leftrightarrow3-\left|x\right|=-6,25\)
\(\Leftrightarrow\left|x\right|=-3,25\)
\(\Leftrightarrow x\in\varnothing\)
\(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\Rightarrow3x-3=5-10x\)
Áp dụng tính chất chuyển quế đổi giấu
3x+10x=5+3=8
13x=8
\(\Rightarrow\dfrac{8}{13}\)
b)\(\dfrac{3-|x|}{5}=1\dfrac{1}{2}chia\dfrac{-6}{5}=\dfrac{-5}{4}\)
3-/x/=5chia\(\dfrac{-5}{4}\)=-4
/x/=-4+3=-1
Mà /x/\(\ge0\Rightarrow x\in\varnothing\)
Tick em nha
ÁP dụng cái bất đẳng thức j j đó
mk có xem làm ở đâu rùi nhưng chưa học nên ko bt giải
a: \(A=\dfrac{1.3-2.6}{2.6}-\dfrac{5}{6}:2=\dfrac{-1}{2}-\dfrac{5}{12}=\dfrac{-11}{12}\)
\(B=\left(\dfrac{47}{8}-\dfrac{9}{4}-\dfrac{1}{2}\right):\dfrac{75}{26}=\dfrac{47-18-4}{8}\cdot\dfrac{26}{75}=\dfrac{25}{75}\cdot\dfrac{26}{8}=\dfrac{13}{12}\)
b: Để A<x<B thì -11/12<x<13/12
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
a)
TH1: \(x< \dfrac{-2}{3}\)
<=> \(\left\{{}\begin{matrix}\left|0,5x-2\right|=2-0,5x\\\left|x+\dfrac{2}{3}\right|=-x-\dfrac{2}{3}\end{matrix}\right.\)
PT <=> \(2-0,5x+x+\dfrac{2}{3}=0< =>x=\dfrac{-16}{3}\left(c\right)\)
TH2: \(\dfrac{-2}{3}\le x< 4\)
<=> \(\left\{{}\begin{matrix}\left|0,5x-2\right|=2-0,5x\\\left|x+\dfrac{2}{3}\right|=x+\dfrac{2}{3}\end{matrix}\right.\)
PT <=> \(2-0,5x-x-\dfrac{2}{3}=0< =>x=\dfrac{8}{9}\left(c\right)\)
TH3: \(x\ge4\)
<=> \(\left\{{}\begin{matrix}\left|0,5x-2\right|=0,5x-2\\\left|x+\dfrac{2}{3}\right|=x+\dfrac{2}{3}\end{matrix}\right.\)
PT <=> \(0,5x-2-x-\dfrac{2}{3}=0< =>x=\dfrac{-16}{3}\left(l\right)\)
KL: x \(\left\{\dfrac{-16}{3};\dfrac{8}{9}\right\}\)
b) TH1: \(x\ge-1< =>\left|x+1\right|=x+1\)
PT <=> 2x - x -1 = \(\dfrac{-1}{2}\)
<=> x = \(\dfrac{1}{2}\) (c)
TH2: x < -1 <=> \(\left|x+1\right|=-x-1\)
PT <=> 2x + x + 1 = \(\dfrac{-1}{2}\)
<=> x = \(\dfrac{-1}{2}\) (l)
KL: x \(\in\left\{\dfrac{1}{2}\right\}\)
\(\left|x+\dfrac{1}{2}\right|+\left|x-y+z\right|+\left|y+\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+\dfrac{1}{3}=0\\x-y+z=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{3}\\z=-x+y=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\end{matrix}\right.\)
\(A=2x+y+z=-1-\dfrac{1}{3}+\dfrac{1}{6}=-\dfrac{4}{3}+\dfrac{1}{6}=-\dfrac{7}{6}\)
\(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=900\\ \Leftrightarrow\left(x-1\right)^2=\left(\pm30\right)^2\\ \Rightarrow x-1\in\left\{30;-30\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy...
a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)
\(\Leftrightarrow x-2=7\)
hay x=9
\(\dfrac{x+2}{0,5}=\dfrac{2x+1}{2}\)
\(\Leftrightarrow\left(x+2\right).2=\left(2x+1\right).0,5\)
\(\Leftrightarrow2x+4=x+0,5\)
\(\Leftrightarrow x=-3,5\)
Vậy...
\(\dfrac{x+2}{0,5}=\dfrac{2x+1}{2}\)
\(\Leftrightarrow\dfrac{4.\left(x+2\right)}{2}=\dfrac{2x+1}{2}\)
\(\Rightarrow4x+8=2x+1\)
\(\Leftrightarrow4x-2x=1-8\)
\(\Leftrightarrow2x=-7\)
\(\Leftrightarrow x=\dfrac{-7}{2}\)
Vậy \(x=\dfrac{-7}{2}\)