Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}-\dfrac{1213}{100}=2\cdot\left[\left(x-\dfrac{10}{7}\right)\cdot\dfrac{49}{50}+\dfrac{2}{5}\right]\)
\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}=\dfrac{49}{25}\left(x-\dfrac{10}{7}\right)+\dfrac{4}{5}+\dfrac{1213}{100}\)
\(\Leftrightarrow\dfrac{1313}{100}-\dfrac{101}{25}x=\dfrac{49}{25}x-\dfrac{490}{175}+\dfrac{1293}{100}\)
=>-6x=13/5
hay x=-13/30
a)\(3\dfrac{1}{3}:2\dfrac{1}{2}-1< x< 7\dfrac{2}{3}.\dfrac{3}{7}+\dfrac{5}{2}\)
\(\dfrac{4}{3}-1< x< \dfrac{23}{7}+\dfrac{5}{2}\)
\(\dfrac{1}{3}< x< \dfrac{81}{14}\)
Vì\(\dfrac{1}{3}=0,333333333333333333333333...\)
\(\dfrac{81}{14}=5,785714286\)
=>\(x=\left\{1;2;3;4;5\right\}\)
b)\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}\)
\(-\dfrac{1}{12}< x< \dfrac{1}{8}\)
Vì\(-\dfrac{1}{12}=-0.08333333333333333\)
\(\dfrac{1}{8}=0.125\)
=> \(x=\left\{0\right\}\)
a.\(3\dfrac{1}{3}:2\dfrac{1}{2}-1< x< 7\dfrac{2}{3}.\dfrac{3}{7}+\dfrac{5}{2}\)
\(\dfrac{4}{3}-1< x< \dfrac{23}{7}+\dfrac{5}{2}\)
\(\dfrac{1}{3}< x< \dfrac{81}{14}\)
\(0,3333...< x< 5,7857...\)
Vì \(x\in Z\Rightarrow x\in\left\{1;2;3;4;5\right\}\)
Vậy........
b. \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\dfrac{-1}{12}< x< \dfrac{1}{8}\)
\(-0,0833...< x< 0,125\)
Vì \(x\in Z\Rightarrow x\in\left\{0\right\}\)
Vậy............
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
c: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{1}{2}\\x-\dfrac{2}{5}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{10}\\x=-\dfrac{1}{10}\end{matrix}\right.\)
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)
\(\Leftrightarrow x-2=7\)
hay x=9