Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}=\dfrac{y}{4}\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}\)=2
* \(\dfrac{x}{3}=2=>x=6\)
*\(\dfrac{y}{4}=2=>y=8\)
Vậy( x, y) ∈{ 6, 8}
Kiểm tra lại nhaa
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a: =>x+1/2=5
=>x=9/2
b: =>(x-1)^2=900
=>x-1=30 hoặc x-1=-30
=>x=-29 hoặc x=31
Giải:
a) \(\dfrac{x}{-4}=\dfrac{-9}{x}\)
\(\Leftrightarrow x.x=-4.\left(-9\right)\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm6\)
Vậy ...
b) \(\dfrac{x-1}{-15}=\dfrac{-60}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=900\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy ...
d) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow5x-14=3x-4\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Vậy ...
1.
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\end{matrix}\right.\)
\(\Rightarrow x^2-y^2=\left(5k\right)^2-\left(4k\right)^2=25k^2-16k^2=9k^2=4\)
\(\Rightarrow k^2=\dfrac{4}{9}\Rightarrow k=\pm\dfrac{2}{3}\)
\(\circledast k=\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{8}{3}\end{matrix}\right.\)
\(\circledast k=-\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=-\dfrac{8}{3}\end{matrix}\right.\)
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
\(\Rightarrow y=\dfrac{\dfrac{2\cdot2+1}{5}\cdot7+2}{3}=3\)
3.
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\dfrac{95-8+3}{9}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot4+2}{2}=21\\y=\dfrac{10\cdot9+6}{3}=32\\z=10\cdot4+3=43\end{matrix}\right.\)
Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x
=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x
=> 2x+3y-1 / 12 = 2x+3y-1 / 6x
=> 12 = 6x => x =2
Áp dụng dãy tỉ số bằng nhau là ra mà.
Giải:
Áp dụng dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y+1-2}{5+7}\)\(=\dfrac{2x+3y-1}{12}\) (1)
\(\Rightarrow\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)\(\Rightarrow6x=12\Rightarrow x=2\)
Thay vào (1), ta được:
\(\dfrac{2.2+1}{5}=\dfrac{3y-2}{7}\Rightarrow1=\dfrac{3y-2}{7}\) \(\Rightarrow3y-2=7\Rightarrow y=3\)
Vậy x=2 , y=3
\(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=900\\ \Leftrightarrow\left(x-1\right)^2=\left(\pm30\right)^2\\ \Rightarrow x-1\in\left\{30;-30\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy...
Câu 1 kk bt lm ak