Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số đó lần lượt là a+1,a+2,a+3. Theo đề bài,ta cần chứng minh:
\(\left(a+1+a+2+a+3\right)^3⋮9\) hay \(\left(3a+6\right)^3⋮9\)
Ta có: \(\left(3a+6\right)^3=\left(3a+6\right)\left(9a^2-180a+36\right)\) (Hằng đẳng thức đáng nhớ)
\(=9\left(3a+6\right)\left(a^2-20a+4\right)⋮9^{\left(đpcm\right)}\)
Quá đơn giản!
Ba số nguyên liên tiếp là n, n + 1, n + 2 , ta phải c/m :
\(A=n^3+(n+1)^3+(n+2)^3⋮9\)
Ta có : \(A=n^3+(n+1)^3+(n+2)^3=3n^3+9n^2+15n+9\)
\(=3n^3-3n+18n+9n^2+9=3n(n-1)(n+1)+18n+9+9n^2\)
n, n - 1, n + 1 là ba số nguyên liên tiếp,trong đó có một số chia hết cho 3
Vậy : \(B=3n(n-1)(n+1)⋮9\)
\(C=18n+9n^2+9⋮9\)
=> \(A=B+C\)mà \(\hept{\begin{cases}B⋮9\\C⋮9\end{cases}}\Rightarrow A⋮9\)
hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta dc điều phải chứng minh
gọi ba số tự nhiên đó là a,a+1,a+2
theo bài ta có
(a+a+1+a+2)3
=(a+a+a+1+2)3
=(a+a+a+3)3
=(a+a+a)3+27
mà (a+a+a)3 chia hết cho 3
nên (a+a+a)3 chia het cho 9
do 27 chia het cho 9
nen (a+a+a)3+27 chia het cho 9
vậy ............................
vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
Ta có a,b,c là 3 số tụ nhiên liên tiếp
\(\Rightarrow\)a=k+1;b=k+2;c=k+3
\(\Rightarrow a^3+b^3+c^3=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)
\(=3k^3+18k^2+36k+36\)(saau khi đã rút gọn-dung HĐT số 4)
Phần sau bạn tự làm tiếp
1
Gọi 3 số nguyên liên tiếp là n-1 , n . n+1
(n-1)3 +n3+(n+1)3
= n3 - 3n2+3n -1 + n3 + n3 +3n2 +3n +1
= 3n3 + 6n
= 3n3- 3n + 9n
= 3 (n3-n) + 9n chia hết cho 9
2)
Có a3+b3+c3 chia hết cho 9 (1)
Giả sử a,b,c đều ko chia hết cho 3 (BS3\(\pm1\))
\(\Rightarrow\) lập phương mỗi số dạng BS9 \(\pm1\)
\(\Rightarrow a^3+b^{3^{ }}+c^3=BS9+r_1+r_2+r_3\)
Có r1,r2,r3 \(\in\left(1;-1\right)\)
Không có cách nào để r1,r2,r3 nào để tổng chia hết cho 9 trái với (1)
Vậy tồn tại 1 trong 3 số a,b,c là bội của 3
mình chưa hiểu đề lắm
sao lại lập phương 3 số tự nhiên liên tiếp
gọi 3 số tự nhiên liên tiếp là a-1;a;a+1
ta có
\(\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a^3+6a=3a^3-3a+9a=3a\left(a^2-1\right)+9a=3\left(a-1\right)a\left(a+1\right)+9a\)
vì tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
\(\Rightarrow3\left(a-1\right)a\left(a+1\right)⋮9\)
mà \(9a⋮9\)
vậy lập phương 3 số tự nhiên liên tiếp chia hết cho 9