K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

Bạn cho nhiều bài quá !

13 tháng 7 2015

6) (n-1)^3 < (n-1)n(n+1) = n(n^2 -1) = n^3-n < n^3

25 tháng 7 2016

Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:

x(x+2)(x+4)(x+6) + 16

= x(x+6)(x+2)(x+4) + 16

= ( x2 + 6x)( x2+6x+8) + 16 (*)

Đặt x2 + 6x= a. Thay vào (*) ta lại có

(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2

Thay a= x2 + 6x vào ta có:

(*)= ( x2 + 6x + 4)2

Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.

Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương

16 tháng 9 2018

BÀI GIẢI 
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6. 
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6) 
Ta có : 
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16 
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16 
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16 
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16 
A = 16a^4 + 96a^3 + 176a^2 + 96a +16 
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16 
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4) 
A = (4a^2 + 12a + 4)^2 (1) 

Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2) 

(1)(2)=> A là số chính phương 
=> Đpcm 

17 tháng 6 2016

Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))

Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.

Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.

Vậy ta có điều phải chứng minh.

4 tháng 9 2020

G/s 3 số nguyên dương đó là: \(a;a+1;a+2\) với \(a\inℕ\)

Ta có: \(a\left(a+1\right)\left(a+2\right)=a^3+3a^2+2a\)

Xét: \(a^3+3a^2+2a>a^3\)

Mặt khác: \(a^3+3a^2+2a< a^3+3a^2+3a+1=\left(a+1\right)^3\)

=> \(a^3< a^3+3a^2+2a< \left(a+1\right)^3\)

Mà \(a^3;\left(a+1\right)^3\) là 2 số lập phương liên tiếp

=> \(a^3+3a^2+2a\) không là lập phương của 1 số tự nhiên

=> đpcm

25 tháng 8 2015

3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10+ 5 .111...11(n chữ số 1) + 1
 \(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1 \)

\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)

\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)

\(A =\frac {(10^n + 2)^2} {3^2}\)

\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)

 

b)Ta thấy 16 = 1.15 + 1
               1156 = 11.105 + 1
               111556 = 111.1005 + 1
...            111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
               Vẫy các số hạng trong dãy trên đều là số chính phương

11 tháng 7 2015

3a)(dấu * là nhân nhé)

Có ab+1

=11...1*100...05+1

=11...1*(33...35(n-1 chữ số 3)*3)+1

=33...3*33...35+1

=33...3*(33...34+1)+1

=33...3*33...34+(33...3+1)

=33...3*33...34+33...34(n-1 chữ số 3)

=33...34*(33...3+1)

=33...34*33...34(n-1 chữ số 3)

=(33...34)^2 là số chính phương

17 tháng 8 2016

Giả sử ab + 4 là số chính phương

Ta có: ab + 4 = x2

=> ab = x2 - 4

=> ab = (x - 2).(x + 2)

Giử sử a > b => a = x + 2; b = x - 2

=> a - b = (x + 2) - (x - 2)

=> a - b = x + 2 - x + 2

=> a - b = 4

=> với a - b = 4 thì ab + 4 là số chính phương

=> điều giả sử là đúng

ta có: giả sử ab + 4 = A2

<=> A2 - 4 = ab

<=> A2 - 22 = ab

<=> (A - 2) (A + 2) = ab : luôn đúng với mọi a,b

=> ĐCCM

t i c k nha!! 5675675677687697843543543534456567567876876876897

16 tháng 8 2015

Gọi 5 số  đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2

Tổng Bình phương 5 số là :

     ( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2 

=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 

= 5a^2 + 10 

= 5 ( a^ 2 + 2 ) chia hết cho 5  (1)

Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)

Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương 

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^