Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét x;y không chia hết cho 3
=>x2;y2 không chia hết cho 3
=>x2;y2 chia 3 dư 1
=>x2+y2 chia 3 dư 2(trái giả thuyết)
=>sẽ có 1 số x hoặc y chia hết cho 3
vì tính chất của x;y như nhau nên ta giả sử x chia hết cho 3
=>x2 chia hết cho 3
=>y2 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
=>đpcm
xét x;y không chia hết cho 3
=>x2;y2 không chia hết cho 3
=>x2;y2 chia 3 dư 1
=>x2+y2 chia 3 dư 2(trái giả thuyết)
=>sẽ có 1 số x hoặc y chia hết cho 3
vì tính chất của x;y như nhau nên ta giả sử x chia hết cho 3
=>x2 chia hết cho 3
=>y2 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
=>đpcm
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
7a+25b+61c=(6a+24b+60c)+(a+b+c) chia hết cho 6, mà 6a+24b+60c chia hết cho 6 => a+b+c chia hết cho 6
Từ hằng đẳng thức: a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ac)
Ta thấy vế phải chia hết cho 6 nên vế trái chia hết cho 6
Ta có a+b+c chia hết cho 6 nên a+b+c chẵn.
a+b+c chẵn khi cả 3 số đều chẵn hoặc có 1 số chẵn và 2 số lẻ => tích abc chẵn => abc=2n => 3abc=6n chia hết cho 6
Vế trái của hằng đẳng thức chia hết cho 6 mà 3abc chia hết cho 6 nên a3+b3+c3 chia hết cho 6
Ta thấy: 10 đồng dư với 1(mod 3)
=>10n đồng dư với 1n(mod 3)
=>10n đồng dư với 1(mod 3)
Lại có: 139 đồng dư với 1(mod 3)
=>10n-139 đồng dư với 1-1(mod 3)
=>10n-139 đồng dư với 0(mod 3)
=>10n-139 chia hết cho 3
=>ĐPCM