K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

7 tháng 7 2019

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

29 tháng 7 2016

xét số dư n khi chia cho 7 là 1,2,3,4,5 hoặc 6 (do n không chia hết cho 7 )
=>số dư của \(n^3\)khi chia cho 7 lần lượt là 1,6
nếu dư 1=>n^3-1 chia hết cho 7
nếu dư 6=> n^3+1 chia hết cho 7
p/s : bài này bạn dùng đồng dư cũng đc -_-

29 tháng 7 2016

Gọi n=7x+a

n^3=(7x+a)^3, a=[1,2,3,4,5,6], x€Z vì n không chia hết cho 7

Khai hằng đẳng thức (7x+a)^3= ...+a^3

Những số kia chia hết cho 7 nên ta chỉ  xét a^3

Ta thay thế lần lượt a=1,..,6

Ta chứng minh đựợc a^3-1 hoặc a^3+1 sẽ chia hết cho 7.

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

 Xét với n=3k+r(k,rϵN;0≤r≤2)

Đặt A

Ta có: A=2^n−1=2^3k+r−1=2^r.8^k−1=2^r(8^k−1)+2^r−1≡2^r−1(mod7)

A⋮8<=>2^r−1⋮8

Với: r=0⇒2^r−1=0⋮8

r=1⇒2^r−1=1≡1(mod8)

r=2⇒2^r−1=3≡3(mod7)

→ Với n=3k(kϵN thì A⋮7)

5 tháng 11 2019

xạo chóa quá e ! lớp 9 j chứ , cái này lớp 7 

Câu hỏi của Nguyễn Trần Duy Thiệu - Toán lớp 8 | Học trực tuyến

vào thống kê 

hc tốt