Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3;y^3\equiv1;-1\left(mod9\right)\Rightarrow x^6\equiv y^6\equiv1\left(mod9\right)\Rightarrow x^6-y^6⋮9\)
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
Giả sử (x;p) = 1 thì ta thấy (y,p) = 1
Ta có: \(x^2\equiv-y^2\left(mod\text{ p}\right)\)
\(\Leftrightarrow x^{4k+2}\equiv-y^{4k+2}\left(mod\text{ p}\right)\)
\(\Leftrightarrow1\equiv-1\left(mod\text{ p}\right)\)(Định lí Fermat)
Do đó \(\left(x;p\right)\ne1\Rightarrow x⋮p\)và dễ thấy \(y⋮p\)(Đpmcm)
xét x;y không chia hết cho 3
=>x2;y2 không chia hết cho 3
=>x2;y2 chia 3 dư 1
=>x2+y2 chia 3 dư 2(trái giả thuyết)
=>sẽ có 1 số x hoặc y chia hết cho 3
vì tính chất của x;y như nhau nên ta giả sử x chia hết cho 3
=>x2 chia hết cho 3
=>y2 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
=>đpcm
xét x;y không chia hết cho 3
=>x2;y2 không chia hết cho 3
=>x2;y2 chia 3 dư 1
=>x2+y2 chia 3 dư 2(trái giả thuyết)
=>sẽ có 1 số x hoặc y chia hết cho 3
vì tính chất của x;y như nhau nên ta giả sử x chia hết cho 3
=>x2 chia hết cho 3
=>y2 chia hết cho 3
=>y chia hết cho 3
=>x;y chia hết cho 3
=>đpcm