Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{m}{n}\) = (1+\(\frac{1}{1998}\)) + (\(\frac{1}{2}\)+ \(\frac{1}{1997}\))+...+ (\(\frac{1}{999}\)+\(\frac{1}{1000}\)) ( có 999 cặp)
\(\frac{m}{n}\)= \(\frac{1999}{1.1998}\)+ \(\frac{1999}{2.1997}\) +...+ \(\frac{1999}{999.1000}\)
Gọi mẫu số chung của 999 phân số trên là K
=> \(\frac{m}{n}\)= \(\frac{1999.999}{K}\) Mà 1999 là số nguyên tố nên khi rút gọn thì ở tử số vẫn còn 1999.
Vậy m=1999n. => m chia hết cho 1999.
Gọi ƯCLN(n+3,2n+5) = d
=> n+3 chia hết cho d, 2n+5 chia hết cho d
=> 2(n+3) chia hết cho d, 2n+5 chia hết cho d
=> 2n+6 chia hết cho d,2n+5 chia hết cho d
=> (2n+6)-(2n+5) chia hết cho d
=> 1 chia hết cho d =>đpcm.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.