K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1}{3}\left(x+y+z=1\right)\)

Dấu ''='' xảy ra <=> x = y = z = \(\frac{1}{3}\)

Vậy x2 + y2 + z2 \(\ge\frac{1}{3}\) tại x = y = z = \(\frac{1}{3}\)

31 tháng 8 2020

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\)  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)

\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

=> đpcm

26 tháng 12 2016

a) xem lại thiếu cái đk gì đó

b) thích chọn số nào tùy

 \(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)

26 tháng 7 2019

Đặt \(\frac{x}{z}=\frac{z}{y}=k\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)(1)

\(\Rightarrow\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+\left(yk\right)^2}{y^2+z^2}=\frac{k^2\left(z^2+y^2\right)}{y^2+z^2}=k^2\)(2)

Từ (1) suy ra \(x=yk^2\Rightarrow\frac{x}{y}=\frac{yk^2}{y}=k^2\)(3)

Từ (2) và (3) suy ra \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)

26 tháng 7 2019

Đặt\(\frac{x}{z}\)=\(\frac{z}{y}\)= k

=> x = k . z ; z = k . y

=>\(\frac{x^2+y^2}{y^2+z^2}\)\(\frac{\left(k.z\right)^2+\left(k.y\right)^2}{y^2+z^2}\)=\(\frac{k^2.\left(z^2+y^2\right)}{z^2+y^2}\)\(k^2\)(1)

=> \(\frac{x}{y}\)\(\frac{k.z}{y}\)=\(\frac{k.k.y}{y}\)=\(\frac{k^2.y}{y}\)\(k^2\)(2)

Từ (1);(2)

=> ĐPCM

~~~~~Chúc bạn hok tốt~~~~~

26 tháng 7 2019

Bạn đăng bài này 2 lần luôn. Khiết Băng

26 tháng 7 2019

Tại mình ko biết làm ! Bạn giúp mình với

19 tháng 8 2015

\(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}\)

mà x<y=>a<b=> \(\frac{a+a}{2m}

23 tháng 4 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

1 tháng 12 2016

\(\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\)

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)

---> dp cm