Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)= \(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)
= \(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3
Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)
đặt A= 0,7x^4+0,2^2-5-0,3x^4-0,2x^2+8
=0,4x^4+3
vì x^4 luôn dương với mọi x
suy ra biểu thức A luôn dương với mọi giá trị của x (đpcm)
mấy bn xem mk giải thử chứ mk ko bít đúng ko luôn !!! hjhj
ta có: 0,7x4+0,2x2-5+0,3x4-1/5x2+8
= 0,7x4+0,3x4+0,2x2-1/5x2 -5+8
= x4+3 lớn hơn hoặc bằng 3 >0 vì x4 lớn hơn hoặc bằng 0 với x E R
xem rùi cho ý kiến đừng nói này nói nọ !!!!
duyệt đi
\(0.7x^4+0.2x^2-5+0.3x^4-\dfrac{1}{5}x^2+8=x^4+3>0\)(luôn đúng)
=>ĐPCM
Lời giải:
$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$
Do đó ta có đpcm.
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
Ta có: \(f\left(x\right)-g\left(x\right)=\left(0,7x^4+0,2x^2-5\right)-\left(0,3x^4+0,1x^2-8\right)\)
\(=0,7x^4+0,2x^2-5-0,3x^4-0,1x^2+8\)
\(=0,4x^4+0,1x^2+3\)
Vì \(\hept{\begin{cases}0,4x^4\ge0\\0,1x^2\ge0\end{cases}}\)nên \(0,4x^4+0,1x^2+3>0\)
\(\Rightarrow f\left(x\right)-g\left(x\right)>0\)hay \(f\left(x\right)>g\left(x\right)\forall x\)