Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Bạn có thể tự làm
b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)
Để f(x)+g(x)-h(x)=0
thi x(2x+3)=0
suy ra x=0 hoặc x=-3/2
c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x
Chúc bạn học tốt!
a) \(f\left(x\right)=4x^2+3x-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)
ta có hàm số y = f(x) = 3x2 + 5
vì x2 \(\ge\)0 \(\forall\)x \(\Rightarrow\)3x2 + 5 \(\ge\)5 hay y \(\ge\)5
Vậy với mọi giá trị của x thì hàm số đã cho luôn nhận giá trị dương
Vì x2>0 ( với mọi x ) nên 3x2+5 > 0
Vậy f(x) = 3x2 + 5 luôn nhận giá trị dương với mọi giá trị x ( đpcm ).
XONG RỒI ĐÓ...
Với mọi \(x\in R\) , ta có \(3x^2\ge0\) suy ra \(3x^2+5>5\). Vì vậy với mọi giá trị x thì hàm số đã cho nhận giá trị dương.
Ta có: \(f\left(x\right)-g\left(x\right)=\left(0,7x^4+0,2x^2-5\right)-\left(0,3x^4+0,1x^2-8\right)\)
\(=0,7x^4+0,2x^2-5-0,3x^4-0,1x^2+8\)
\(=0,4x^4+0,1x^2+3\)
Vì \(\hept{\begin{cases}0,4x^4\ge0\\0,1x^2\ge0\end{cases}}\)nên \(0,4x^4+0,1x^2+3>0\)
\(\Rightarrow f\left(x\right)-g\left(x\right)>0\)hay \(f\left(x\right)>g\left(x\right)\forall x\)