K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$

Do đó ta có đpcm.

12 tháng 5 2021

C trợ giúp câu mới nhất em gửi trong inb nhé !

Ta có: \(1.2x^4+0.4x^2-3-0.2x^4-0.4x^2+9\)

\(=x^4+6\ge6>0\forall x\)(đpcm)

 

12 tháng 5 2021

0∀x(đpcm)?

31 tháng 3 2019

đặt A= 0,7x^4+0,2^2-5-0,3x^4-0,2x^2+8

        =0,4x^4+3

        vì x^4 luôn dương với mọi x

suy ra biểu thức A luôn dương với mọi giá trị của x (đpcm)

11 tháng 3 2018

bai nay kho qua

11 tháng 3 2018

Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)\(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)

\(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3

Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)

10 tháng 3 2016

mấy bn xem mk giải thử chứ mk ko bít đúng ko luôn !!! hjhj

ta có: 0,7x4+0,2x2-5+0,3x4-1/5x2+8

       = 0,7x4+0,3x4+0,2x2-1/5x-5+8

      = x4+3 lớn hơn hoặc bằng 3 >0 vì x4 lớn hơn hoặc bằng 0 với x E R

xem rùi cho ý kiến đừng nói này nói nọ !!!!

duyệt đi

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

Bài làm

a) Tích của hai đơn thức A và B là:

A . B = -2xy . xy = -2x2y2 

b) Hệ số của đơn thức là: -2.

Biến của đơn thức là: x2y2 

Bậc của đơn thức là: 4

c) Thay x = 3 vào tích của hai đơn thức A và B ta được:

-2 . 32 . y2 

Mà giá trị của đơn thức là -6

<=> -2 . 32 . y2 = -6

<=> -2 . 9 . y2 = -6

<=> -18 . y2 = -6

<=> y2 = \(\frac{-6}{-18}=\frac{1}{3}\)

<=> y = \(\pm\sqrt{\frac{1}{3}}\)

Vậy với x = 3, giá trị của đơn thức là -6 thì y = \(\pm\sqrt{\frac{1}{3}}\)

d) Ta có: -2x2y 

Mà x2 > 0 V x thuộc R

      y2 > 0 V y thuộc R

=> x2y2 > 0 V x,y thuộc R

=> x2y2 luôn là số dương.

Mà -2x2y2 < 0 V x,y thuộc R

Vậy đa thức trên luôn nhận giá trị âm với mọi x, y.

# Học tốt #

17 tháng 4 2020

Cho đơn thức A = -2xy và đơn thức B = xy

a) Tích của hai đơn thức 

\(A\cdot B=-2xy\cdot xy=-2\left(xx\right)\left(yy\right)=-2x^2y^2\)

b) Hệ số : -2

Phần biến : x2y2

Bậc của đơn thức tích = 2 + 2 = 4

c) Đơn thức tích có giá trị là -6

=>  \(-2x^2y^2=-6\)biết x = 3

Thay x = 3 vào đơn thức tích ta được :

\(-2\cdot3^2\cdot y^2=-6\)

=> \(-2\cdot9\cdot y^2=-6\)

=> \(-18\cdot y^2=-6\)

=> \(y^2=\frac{1}{3}\)

=> \(y=\sqrt{\frac{1}{3}}\)

d) CMR đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y

Ta dễ dàng nhận thấy : x2 và y2 đều có số mũ là chẵn

=> x2y2 luôn nhận giá trị dương với mọi x và y

Phần hệ số -2 mang dấu âm

=> ( - ) . ( + ) = ( - )

=> Đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y ( đpcm )

24 tháng 6 2020

A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2

        = 5x2 + 5

Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)

=> A(x) luôn dương với mọi x

B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9

        = -x2 - 2

Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)

=> B(x) luôn âm với mọi x 

24 tháng 6 2020

\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)

\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)