Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3
Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)
=>giả sử sai => m chia hết cho 3
Chứng minh tương tự n chia hết cho 3
* m,n chia hết cho 3 => m^2+n^2 chia hết cho 3
Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3
Theo đề bài: p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p = 2k + 1 ( \(k\in z;k>1\))
=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)
=> A chia hết cho 8 (1)
Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))
=> A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
Ta có : m.n( m2.n2 )
= m.n [( m2 - 1 ) - ( n2 - 1)]
= m( m2 - 1 )n - mn( n2 - 1 )
= ( m - 1 )m( m + 1 )n - m( n - 1 )n( n + 1 )
Ta thấy: * ( m - 1) ; m và ( m + 1) là ba số nguyên liên tiếp
=> ( m - 1 )m( m + 1 ) chia hết cho 6
=> ( m - 1 )m ( m + 1 )n chia hết cho 6 (1)
* ( n - 1) ; n ; ( n + 1 ) là ba số nguyên liên tiếp
=> ( n - 1)n( n + 1 ) chia hết cho 6
=> m( n - 1 )n( n + 1 ) chia hết cho 6 (2)
Từ (1) và (2) suy ra : ( m - 1)m( m + 1)n - m( n - 1)n( n + 1 ) chia hết cho 6
Vậy m.n( m2.n2 ) chia hết cho 6 (đpcm)
Hok tốt !
Em kiểm tra lại đề và có thể tham khảo 1 cách giải ( lớp 7 có thể hiểu):
Câu hỏi của Luong Ngoc Quynh Nhu - Toán lớp 8 - Học toán với OnlineMath
\(1.\)Ta có: \(8.10^{2016}+2017=8.10...000+2017=80...000+2017=80...2017\)
Mà tổng các chữ số của số trên là: \(8+0+...+2+0+1+7=18\)chia hết cho 9
\(\Rightarrow\)\(8.10^{2016}+2017\)chia hết cho 9
Vậy \(\frac{8.10^{2016}+2017}{9}\)có giá trị là 1 số tự nhiên.
\(2.\)Ta có: 220 đồng dư với 0 (mod 2) nên \(220^{11969}\)đồng dư với 0 (mod 2)
119 đồng dư với 1 (mod 2) nên \(119^{69220}\)đồng dư với 1 (mod 2)
69 đồng dư với -1 (mod 2) nên \(69^{220119}\)đồng dư với -1 (mod 2)
Vậy A đồng dư với 0 (mod 2) suy ra A chia hết cho 2.
Mặt khác: 220 đồng dư với 1 (mod 3) nên \(220^{11969}\)đồng dư với 1 (mod 3)
119 đồng dư với -1 (mod 3) nên \(119^{69220}\)đồng dư với -1 (mod 3)
69 đồng dư với 0 (mod 3) nên \(69^{220119}\)đồng dư với 0 (mod 3)
Vậy A đồng dư với 0 (mod 3) suy ra A chia hết cho 3.
Ta lại có: 220 đồng dư với -1 (mod 17) nên \(220^{11969}\)đồng dư với -1 (mod 17)
119 đồng dư với 0 (mod 17) nên \(119^{69220}\)đồng dư với 0 (mod 17)
69 đồng dư với 1 (mod 17) nên \(69^{220119}\)đồng dư với 1 (mod 17)
Vậy A đồng dư với 0 (mod 17) suy ra A chia hết cho 17.
Vì 2, 3, 17 là các số nguyên tố \(\Rightarrow\)A chia hết cho 102 (vì 2.3.17 = 102).
Thử nha :33
Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)
Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)
\(=x^3-9k^2x-6k-x+2016b\)
\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)
Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)
\(=x^3-9k^2x-12kx-4x+2016b\)
\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)
\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)
Vậy ta có điều phải chứng minh.
bạn có sách toán nâng cao và các chuyên đề không
ket ban