Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Chứng minh EA.EB = ED.EC
- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)
- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC
* Chứng minh góc EAD = góc ECB
- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)
- Suy ra góc EAD = góc ECB
b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o
- Xét Δ EDB vuông tại D có góc B = 30o
→ ED = 1/2 EB
- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2
c) - Chứng minh BMI đồng dạng với Δ BCD (gg)
- Chứng minh CM.CA = CI.BC
- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi
Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2
d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)
→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC
- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)
→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P
a) Chứng minh tam giác BDE đồng dạng tam giác CAE ( trường hợp góc-góc)
=> \(\frac{ED}{EA}=\frac{EB}{EC}=>EA.EB=ED.EC\)
b) Tam giác BDE đồng dạng tam giác CAE (chứng minh trên)
=> \(\frac{ED}{EA}=\frac{EB}{EC}=>\frac{ED}{EB}=\frac{EA}{EC}\)
Có góc E chung nên tam giác EAD đồng dạng tam giác ECB
=> góc EAD = góc ECB (2 góc tương ứng)
c) Kẻ MI vuông góc tam giác BC
Tam giác BMI đồng dang tam giác BCD (g-g)
=>BM.BD=BI.BC (1)
Tam giác CMI đồng dạng tam giác CBA (g.g)
=>CM.CA=IC.BC (2)
Từ 1 và 2 => BM.BD+CM.CA=BC^2 không đổi vì BC cố định