K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2021

Cách 1: Gọi N là trung điểm của AC.

Xét tam giác ABC ta có:

M là trung điểm BC (gt)

N là trung điểm AC (cách vẽ)

=> MN là đường trung bình của tam giác ABC.

=> MN // AB và MN = 1/2 AB = 1/2 . 6 = 3 (cm)

Ta có:

AN = 1/2 AC ( N là trung điểm AC)

=> AN = 1/2 . 10 = 5 (cm)

Xét tam giác AMN ta có:

AN2 = 25 (cm)

AM2 + MN2 = 25 (cm)

=> AN2 = AM2 + MN2

=> Tam giác AMN vuông tại M ( Định lý Pitago đảo) 

=> AM vuông góc với MN tại M

Mà MN // AB ( cmt)

Nên AB vuông góc với AM tại A

=> góc MAB = 90 độ ( đpcm)

Cách 2: Trên tia đối của tia MA lấy điểm E sao cho M là trung điểm của AE.

Xét tứ giác ABEC ta có:

2 đường chéo AE và BC cắt nhau tại M (gt)

M là trung điểm của BC (gt)

M là trung điểm của AE (cách vẽ)

=> Tứ giác ABEC là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

=> AB = EC = 6 cm.

Ta có:

AE = 2AM ( M là trung điểm của AE)

=> AE = 2 . 4 = 8 (cm)

Xét tam giác AEC ta có:

AC2 = 100 (cm)

AE2 + EC2 = 100 (cm)

=> AC2 = AE2 + EC2

=> Tam giác AEC vuông tại E.

=> góc AEC = 90 độ

Mà EC // AB ( tính chất hình bình hành ABEC)

Nên góc MAB = 90 độ ( đpcm)

chị ơi,cái này em học từ lớp 6 rồi ,n=hôm nay em vừa học xog,có j chị k dùm em nhá

22 tháng 1 2021

anh là con trai

6 tháng 3 2016

em mới chỉ học lớp 5 thôi

6 tháng 3 2016

M là trung điểm => BC = AM . 2 = 2 . 2 = 4cm

Nếu MAB vuông => AC là cạnh huyền, có: 

AB2 + BC2 = AC2

32 + 42 = 25 = 52

=> AC = 5

=> MAB = 900

29 tháng 12 2016

do tam giác abc cân tại a

=>góc abc=180-2*góc a

do am=an

=>tam giác amn can taị a

=>góc amn=180-2*góc a

=>góc amn=góc abc(vì cùng bằng 

180-2*góc a)

mà hai góc này ở vị trí so le trong 

=>mn song song vs ab

xét 2 tam giác abn và acm có

chung góc a

am=an

ab=ac

=>tg abn=tg acm

=>bm=cm(2 cạnh tương ứng)

cau 2

theo đề bài ta có

tg abc đều =>ab=bc=ca

ad=be=cf

=>ab-ad=bc-be=ac-cf

hay bd=ce=af

xét 3 tg ade,bed và cef ta có

góc a=gócb=gócc

ad=be=cf

bd=ce=af

=> tg ade= tg bed= tg cef 

=>de=df=ef

=>tg def là tg đều

a: góc C<góc B

=>AB<AC

b: Xét ΔABM co AB=AM và góc A=60 độ

nên ΔAMB đều

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giácBài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giácBài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BCBài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng: 
   a) Góc AMB < góc AMC
   b) Góc MAB > góc CAM
   c) Góc ADB < góc ADC
   d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
   a) BC > CE; CE ⊥ AC
   b) Góc ABM > góc MBC

0
5 tháng 3 2021

undefined

undefined

chữ đẹp quá trời lun