K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

AN=AM

Do đó: ΔABN=ΔACM

8 tháng 1 2022

a) Xét tam giác ABN và tam giác ACM:

+ AB = AC (gt).

\(\widehat{A}\) chung

+ AM = AN (gt).

\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).

\(\Rightarrow\) BN = CM (2 cạnh tương ứng).

b) Ta có: AB = AM + MB; AC = AN + NC.

Mà AB = AC (gt); AM = AN (gt).

\(\Rightarrow\) MB = NC.

Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)

          \(\widehat{CNI}+\widehat{ANI}=180^{o}.\)

Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).

\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)

Xét tam giác BIM và tam giác CIN:

\(\widehat{BMI}=\widehat{CNI}(cmt).\)

\(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).

+ MB = NC (cmt).

\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).

c) Xét tam giác BAI và tam giác CAI có:

+ AI chung.

+ AB = AC (gt).

+ BI = CI (Tam giác BIM = Tam giác CIN)

\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).

\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)

d) Xét tam giác AMN có: AM = AN (gt).

\(\Rightarrow\) Tam giác AMN cân tại A.

\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)

Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)

Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)

8 tháng 1 2022

Vẽ giúp hình đc ạ

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC