Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).
đã chứng minh xong
_______HẾT_________
Gọi L là điểm đối xứng với A qua M.
Dễ dàng cm ABGC là hình bình hành \(\Rightarrow\)AB=CG=6 cm
Lại có AG=8 cm, áp dụng định lý Pitago đảo vào tam giác ACG, ta suy ra tam giác AGC vuông tại G(\(8^2+6^2=10^2\)
Lại có tam giac BAG= tam giác CGA . Do đó góc MAB= 90 độ
M là trung điểm => BC = AM . 2 = 2 . 2 = 4cm
Nếu MAB vuông => AC là cạnh huyền, có:
AB2 + BC2 = AC2
32 + 42 = 25 = 52
=> AC = 5
=> MAB = 900
Cách 1: Gọi N là trung điểm của AC.
Xét tam giác ABC ta có:
M là trung điểm BC (gt)
N là trung điểm AC (cách vẽ)
=> MN là đường trung bình của tam giác ABC.
=> MN // AB và MN = 1/2 AB = 1/2 . 6 = 3 (cm)
Ta có:
AN = 1/2 AC ( N là trung điểm AC)
=> AN = 1/2 . 10 = 5 (cm)
Xét tam giác AMN ta có:
AN2 = 25 (cm)
AM2 + MN2 = 25 (cm)
=> AN2 = AM2 + MN2
=> Tam giác AMN vuông tại M ( Định lý Pitago đảo)
=> AM vuông góc với MN tại M
Mà MN // AB ( cmt)
Nên AB vuông góc với AM tại A
=> góc MAB = 90 độ ( đpcm)
Cách 2: Trên tia đối của tia MA lấy điểm E sao cho M là trung điểm của AE.
Xét tứ giác ABEC ta có:
2 đường chéo AE và BC cắt nhau tại M (gt)
M là trung điểm của BC (gt)
M là trung điểm của AE (cách vẽ)
=> Tứ giác ABEC là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
=> AB = EC = 6 cm.
Ta có:
AE = 2AM ( M là trung điểm của AE)
=> AE = 2 . 4 = 8 (cm)
Xét tam giác AEC ta có:
AC2 = 100 (cm)
AE2 + EC2 = 100 (cm)
=> AC2 = AE2 + EC2
=> Tam giác AEC vuông tại E.
=> góc AEC = 90 độ
Mà EC // AB ( tính chất hình bình hành ABEC)
Nên góc MAB = 90 độ ( đpcm)
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Cách 1: Gọi N là trung điểm của AC.
Xét tam giác ABC ta có:
M là trung điểm BC (gt)
N là trung điểm AC (cách vẽ)
=> MN là đường trung bình của tam giác ABC.
=> MN // AB và MN = 1/2 AB = 1/2 . 6 = 3 (cm)
Ta có:
AN = 1/2 AC ( N là trung điểm AC)
=> AN = 1/2 . 10 = 5 (cm)
Xét tam giác AMN ta có:
AN2 = 25 (cm)
AM2 + MN2 = 25 (cm)
=> AN2 = AM2 + MN2
=> Tam giác AMN vuông tại M ( Định lý Pitago đảo)
=> AM vuông góc với MN tại M
Mà MN // AB ( cmt)
Nên AB vuông góc với AM tại A
=> góc MAB = 90 độ ( đpcm)
Cách 2: Trên tia đối của tia MA lấy điểm E sao cho M là trung điểm của AE.
Xét tứ giác ABEC ta có:
2 đường chéo AE và BC cắt nhau tại M (gt)
M là trung điểm của BC (gt)
M là trung điểm của AE (cách vẽ)
=> Tứ giác ABEC là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
=> AB = EC = 6 cm.
Ta có:
AE = 2AM ( M là trung điểm của AE)
=> AE = 2 . 4 = 8 (cm)
Xét tam giác AEC ta có:
AC2 = 100 (cm)
AE2 + EC2 = 100 (cm)
=> AC2 = AE2 + EC2
=> Tam giác AEC vuông tại E.
=> góc AEC = 90 độ
Mà EC // AB ( tính chất hình bình hành ABEC)
Nên góc MAB = 90 độ ( đpcm)
chị ơi,cái này em học từ lớp 6 rồi ,n=hôm nay em vừa học xog,có j chị k dùm em nhá
anh là con trai