Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/67802117915.html
Bạn vào link này xem nhé
Học tốt!!!!!!!
a) Xét tam giác ABM và CDM có :
MA = MC ( gt )
MB = MD ( gt )
Góc AMB = góc CMD ( đối đỉnh )
=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm
b) Tam giác ABM = tam giác CDM
=> góc BAM = góc DCM
=> AB // CD ( so le )
c) Ta có :
BE =AB
=> B là trung điẻm AE
M là trung điểm AC
=> BM là đường trung bình tam giác ACE
=> BM = 1/2 .EC ( đpcm )
a/ \(\Delta ABM\)và \(\Delta CDM\)có:
BM = DM (gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
AM = CM (M là trung điểm AC)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c) (đpcm)
b/ Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng) ở vị trí so le trong
=> AB // CD (đpcm)
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD
Lời giải:
a,Vì M là trung điểm AC nên MA=MC
MB=MD (gt)=>M là trung điểm của BD
Góc AMB=góc DMC (đối đỉnh)
=> tam giác ABM=tam giác CDM(c.g.c) (1)
b,vì tam giác ABC nhọn(gt)
=>góc B ,góc C nhọn
M là trung điểm của AC và BD
=>M là giao điểm 2 đường thẳng AC và BD
Từ. (1) => góc ABM=góc CDM (so le)
Góc MCD= góc BAM (so le)
Cạnh AB=CD
=>Tứ giác ABCD là hình bình hành
=>AB//CD
c,vì H và K là 2 điểm thuộc BD
mà BH =DK (gt)
Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD
=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)
=>AH//CK
=>góc AKH=góc CHK(2 góc ở vị trí so le)
=> tam giác AHK=tam giác CKH(c.g.c)
=>AK=CH
a) Xét \(\Delta ABM\) và \(\Delta CDM\) ,có :
AM = MC ( M là trung điểm của BC )
MB = MD ( gt )
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
=> \(\Delta ABM=\Delta CDM\) (c.g.c )
b) \(\Delta ABM=\Delta CDM\)
=> \(\widehat{BAM}=\widehat{MCD}\) (2 góc tương ứng )
mà chúng ở vị trí so le trong
=> AB // CD
a) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
AM = MC (gt)
góc AMB = góc DMC ( vì đối đỉnh)
MD = MB (gt)
Do đó: \(\Delta ABM\) = \(\Delta CDM\) (c.g.c)
b) Ta có: \(\Delta ABM=\Delta CDM\left(cmt\right)\)
=> góc ABM = góc MDC mà 2 góc này ở vị trí slt nên AB//CD.