K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Lời giải:

a,Vì M là trung điểm AC nên MA=MC

MB=MD (gt)=>M là trung điểm của BD

Góc AMB=góc DMC (đối đỉnh)

=> tam giác ABM=tam giác CDM(c.g.c) (1)

b,vì tam giác ABC nhọn(gt)

=>góc B ,góc C nhọn

M là trung điểm của AC và BD

=>M là giao điểm 2 đường thẳng AC và BD

Từ. (1)  => góc ABM=góc CDM (so le)

Góc MCD= góc BAM (so le)

Cạnh AB=CD

=>Tứ giác ABCD là hình bình hành

=>AB//CD

c,vì  H và K là 2 điểm thuộc BD

mà BH =DK (gt)

Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD

=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)

=>AH//CK

=>góc AKH=góc CHK(2 góc ở vị trí so le)

=> tam giác AHK=tam giác CKH(c.g.c)

=>AK=CH

2 tháng 4 2018

nếu anh làm được bài này thi em có yêu anh ko

2 tháng 4 2018

thế này đúng ko

a) Chứng minh : 𝛥ABM = 𝛥CDM

Xét 𝛥ABM và 𝛥CDM :hinh hoc lop 7 - hai tam giac bang nhau

MA = MC (gt)

MB = MD (gt)

\widehat{AMB} =\widehat{DMC}  (đối đinh)

=> 𝛥ABM =  𝛥CDM (c – g – c)

b) Chứng minh : AB // CD

Ta có :

\widehat{ABM} =\widehat{MDC}  (góc tương ứng của 𝛥ABM =  𝛥CDM)

Mà : \widehat{ABM} ; \widehat{MDC}  ở vị trí so le trong

Nên : AB // CD

c) Chứng minh BK = DH

Xét 𝛥ABH và 𝛥CDK, ta có :

\widehat{H} =\widehat{K}=90^0

\widehat{ABH} =\widehat{KDC}  (cmt)

AB = CD (𝛥ABM =  𝛥CDM)

=> 𝛥ABH = 𝛥CDK (cạnh huyền – góc nhọn)

=> BH = CK (cạnh tương ứng)

15 tháng 11 2021

b: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

29 tháng 11 2015

Tự vẽ hình nhé

a) Xét \(\Delta\)AMB và \(\Delta\)CME có : MA = MC ( M: trung điểm) ; MB =ME (g t) ; góc AMB =góc CME ( đối đỉnh)

=>  \(\Delta\)AMB và \(\Delta\)CME ( c-g-c)

b) => góc MEC = góc MAB = 90 ( góc tương úng)

=> EC vuông góc AC

mà AB cuông góc AC 

=> EC //AB

c) Vì  \(\Delta\)AMB và \(\Delta\)CME => AB = CE ( cạnh tương úng)

mà AK =AB => AK = CE.

8 tháng 12 2021

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).

Tự vẽ hình nhé

a) Tam giác ABM và tam giác CDM có:

AM=CM ( M là trung điểm của AC)

MD=MB(gt)

góc AMB=góc DMC ( đối đỉnh)

Suy ra tam giác ABM = tam giác CDM (c-g-c)

b)Vì tam giác ABM = tam giác CDM ( chứng minh ở câu a)

Suy ra góc CDM= góc MBA (hai góc tương ứng)

Mà hai góc CDM và MBA la hai góc so le trong

Vậy AB // CD

c)Vì AK vuông góc với BD

CH vuông góc với BD

Suy ra AK // CH ( từ vuông góc đến song song)

Suy ra góc HCM=góc KAM ( hai góc so le trong)

Tam giác CKM= tam giác AHM(g-c-g)

Suy ra KM=HM(hai cạnh tương ứng)

Ta có K nằm giữa M và K

nên Bk+KM=BM (1)

Ta có H nằm giữa M và D

nên MH+HD=MD (2)

mà BM=MD( hai cạnh tương ứng của tam giác ABM và tam giác CDM) (3)

Từ (1),(2) và (3) suy ra BK=DH