Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét ΔAMN và ΔCDN có:
AN=CN (do N là trung điểm của AC)
ANM=CND (2 góc đối đỉnh)
MN=DN (do cách lấy điểm D)
=>ΔAMN=ΔCDN (c.g.c)
=>AM=CD (2 cạnh tương ứng)
Mà AM=MB (do M là trung điểm của AB)
=>MB=CD (=AM)
Mặt khác: ΔAMN=ΔCDN (cmt)
=>AMN=CDN (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong nên:
=>AM//CD hay MB//CD
b.Nối MC
Xét ΔBMC và ΔDCM có:
MC chung
BMC=DCM (2 góc so le trong, do MB//CD)
BM=DC (cm câu a)
=>ΔBMC=ΔDCM (c.g.c)
=>BC=DM (2 cạnh tương ứng)
Lại có: MN=12DM (gt)
=>MN=12BC
Mặt khác: ΔBMC=ΔDCM (cmt)
=>BCM=DMC (2 góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên:
=>MD//BC hay MN//BC.
https://olm.vn/hoi-dap/detail/67802117915.html
Bạn vào link này xem nhé
Học tốt!!!!!!!
a) Xét tam giác ABM và CDM có :
MA = MC ( gt )
MB = MD ( gt )
Góc AMB = góc CMD ( đối đỉnh )
=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm
b) Tam giác ABM = tam giác CDM
=> góc BAM = góc DCM
=> AB // CD ( so le )
c) Ta có :
BE =AB
=> B là trung điẻm AE
M là trung điểm AC
=> BM là đường trung bình tam giác ACE
=> BM = 1/2 .EC ( đpcm )
a/ \(\Delta ABM\)và \(\Delta CDM\)có:
BM = DM (gt)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
AM = CM (M là trung điểm AC)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c) (đpcm)
b/ Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng) ở vị trí so le trong
=> AB // CD (đpcm)
a) Xét tam giác BEA và tam giác DCA có:
+ AE = AC (gt).
+ AB = AD (gt).
+ \(\widehat{BAE}=\widehat{DAC}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác BEA = Tam giác DCA (c - g - c).
b) Tam giác BEA = Tam giác DCA (cmt).
\(\Rightarrow\) \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) BE // CD (dhnb).
c) Xét tam giác BEC có:
+ A là trung điểm của EC (AE = AC).
+ M là trung điểm của BE (gt).
\(\Rightarrow\) AM là đường trung bình của tam giác BEC.
\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(1\right)\)
Xét tam giác CDB có:
+ A là trung điểm của BD (AD = AB).
+ N là trung điểm của CD (gt).
\(\Rightarrow\) AN là đường trung bình của tam giác CDB.
\(\Rightarrow\) AN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) \(\Rightarrow\) AM = AN (cùng = \(\dfrac{1}{2}\) BC).
a: AB=AC=8cm
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
b: Xét tứ giác BEDC có
A là trung điểm của BD
A là trung điểm của EC
Do đó: BEDC là hình bình hành
Suy ra: BE//CD
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó; ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AB//CD