K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: Xét ΔCAB có 

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BM và PN=BM

hay BMNP là hình bình hành

21 tháng 11 2021

Answer:

Bài 7:

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)

\(\Leftrightarrow\widehat{A}=90^o\)

Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)

\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)

\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)

A B x D C

21 tháng 11 2021

Answer:

Bài 8:

a/ P là trung điểm BC (giả thiết)

N là trung điểm AC (giả thiết)

=> NP là đường trung bình

=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)

Mà M là trung điểm của AB (giả thiết)

=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)

Từ (1) và (2) => NP // MB và NP = MB

=> Tứ giác BMNP là hình bình hành

b/ Ta có: AM = NP và NP // MB hay NP // AM

=> AMPN là hình bình hành

Mà ta có \(\widehat{BAC}=90^o\)

=> AMPN là hình chữ nhật

=> AM = PN, AN = MP

c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ

Tương tự ta có: PR vuông góc AB, RM = MP

Ta xét hai tam giác RAM và AQN:

AM = QN (=NP)

\(\widehat{AMR}=\widehat{QNA}=90^o\)

RM = AN (=NP)

=> Tam giác RAM = tam giác AQN (c.g.c)

\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)

Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)

Ta có: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)

=> R, A, Q thẳng hàng

C Q N M B R A P

a: Xét tứ giác MBPA có 

N là trung điểm của MP

N là trung điểm của BA

Do đó: MBPA là hình bình hành

13 tháng 12 2021

Ai đó giải giúp mik vs!!!

6 tháng 1 2022

a) Xét tứ giác AEBM:

+ D là trung điểm của AB (gt).

+ D là trung điểm của ME (M là điểm đối xứng với E qua D).

\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).

\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).

Mà BE = EC (E là trung điểm của BC).

\(\Rightarrow\) AM = EC.

Xét tứ giác ACEM:

+ AM = EC (cmt).

+ AM // EC (AM // BE).

\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).

b) Xét tam giác ABC cân tại A:

AE là đường trung tuyến (E là trung điểm của BC).

\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).

Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).

\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).

c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).

\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).

\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)

6 tháng 1 2022

a,

xét tam giác ABC có đường t/b DE:

=>DE//AC và DE=\(\dfrac{1}{2}\) AC

M là điểm đối xứng của DE:

=>DE+DM=AC

từ trên suy ra:

EM=AC và EM//AC

vậy ACEM là hình bình hành.

b, 

Xét tam giác ABC là tam giác cân :

=>AB=AC

mà AC = ME

nên: AB =ME (1)

lại có: AM=MB , MD=DE(2)

từ (1) và (2) suy ra:

AEBM là hình chữ nhật.

c,

Xét tam giác ABC có BE=EC suy ra:

BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)

vì AEBM là hình chữ nhật nên:

góc AEB = 90\(^o\)<=> AEB là tam giác vuông

vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)