Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
a) Xét tứ giác AEBM:
+ D là trung điểm của AB (gt).
+ D là trung điểm của ME (M là điểm đối xứng với E qua D).
\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).
\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).
Mà BE = EC (E là trung điểm của BC).
\(\Rightarrow\) AM = EC.
Xét tứ giác ACEM:
+ AM = EC (cmt).
+ AM // EC (AM // BE).
\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).
b) Xét tam giác ABC cân tại A:
AE là đường trung tuyến (E là trung điểm của BC).
\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).
Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).
\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).
c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).
\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).
\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)
a,
xét tam giác ABC có đường t/b DE:
=>DE//AC và DE=\(\dfrac{1}{2}\) AC
M là điểm đối xứng của DE:
=>DE+DM=AC
từ trên suy ra:
EM=AC và EM//AC
vậy ACEM là hình bình hành.
b,
Xét tam giác ABC là tam giác cân :
=>AB=AC
mà AC = ME
nên: AB =ME (1)
lại có: AM=MB , MD=DE(2)
từ (1) và (2) suy ra:
AEBM là hình chữ nhật.
c,
Xét tam giác ABC có BE=EC suy ra:
BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)
vì AEBM là hình chữ nhật nên:
góc AEB = 90\(^o\)<=> AEB là tam giác vuông
vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AC
hay DACE là hình thang
b: Xét tứ giác AFCE có
K là trung điểm của AC
K là trung điểm của FE
Do đó: AFCE là hình bình hành
mà \(\widehat{AEC}=90^0\)
nên AFCE là hình chữ nhật
a: Xét ΔCAB có CD/CB=CE/CA
nên DE//AB và DE=AB/2
=>DF//AB và DF=AB
=>ABDF là hình bình hành
Xét tứ giác ABDE có DE//AB
nên ABDE là hình thang
b: Xét tứ giác ADCF có
E là trug điểm chung của AC và DF
góc ADC=90 độ
Do đo: ADCF là hình chữ nhật
c: Vì ABDF là hình bình hành
nên AD cắt BF tại trung điểm của mỗi đường
=>B,I,F thẳng hàng
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN
a: Xét tứ giác ADEF ccó
gócc ADE=góc AFE=góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác AECK có
Dlà trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
c: ΔEMA vuông tại M
mà MO là trung tuyến
nên MO=EA/2=DF/2
Xét ΔMDF có
MO là trung tuyến
MO=DF/2
Do đó: ΔMDF vuông tại M
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành