Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
Sửa đề: a + 2b + 3c = 1
Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)
có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)
Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)
có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)
Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)
\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c
=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm
Vì a và b không âm
=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm
=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm
=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.
a) đenta=b^2-4c
2b+4c=-1=>c=-1-2b)/4
thay vô chứng minh nó lớn hơn 0
x1+x2=b
x1x2=c
ta có x1=2x2
thay vô tìm x1;x2 theo b,c rồi thay vô
mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b
x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c
a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)
b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)
\(=4m^2+4m+1+4m+16\)
\(=4m^2+8m+17\)
\(=4m^2+4m+4+13\)
\(=\left(2m+2\right)^2+13>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
a, Thay m =1 ta đc
\(x^2-3x-5=0\)
\(\Delta=9-4\left(-5\right)=9+20=29>0\)
Vậy pt luôn có 2 nghiệm pb
\(x=\dfrac{3\pm\sqrt{29}}{2}\)
b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)
\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)
vậy pt luôn có 2 nghiệm pb
a, Khi m=2, phương trình trở thành:
\(2x^2-5x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy với m=2, phương trình có nghiệm \(x=\dfrac{1}{2};x=2\)
b, \(\Delta=\left(m+3\right)^2-8m=m^2-2m+9=\left(m-1\right)^2+8>0,\forall m\)
\(\Rightarrow\) Phương trình đã cho có nghiệm với mọi m
Theo định lí Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+3}{2}\\x_1x_2=\dfrac{m}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=\dfrac{m^2+6m+9}{4}\\4x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\dfrac{m^2-2m+9}{4}\)
\(\Rightarrow A=\left|x_1-x_2\right|=\dfrac{\sqrt{m^2-2m+9}}{2}=\dfrac{\sqrt{\left(m-1\right)^2+8}}{2}\ge\sqrt{2}\)
\(\Rightarrow minA=\sqrt{2}\Leftrightarrow m=1\)
pt: \(2x^2-\left(m+3\right)x+m=0\left(1\right)\)
a, khi m=2 ta có: \(2x^2-5x+2=0\)(2)
\(\Delta=\left(-5\right)^2-4.2.2=9>0\)
vậy pt(2) có 2 nghiệm phan biệt \(x3=\dfrac{5+\sqrt{9}}{2.2}=2\)
\(x4=\dfrac{5-\sqrt{9}}{2.2}=0,5\)
b,từ pt(1) có \(\Delta=\left[-\left(m+3\right)\right]^2-4m.2=m^2+6m+9-8m\)
\(=m^2-2m+9=\left(m-1\right)^2+8>0\left(\forall m\right)\)
vậy \(\forall m\) pt(1) luôn có 2 nghiệm phân biệt x1,x2
điều kiện để pt(1) có 2 nghiệm phân biệt không âm khi
\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\Delta>0\left(cmt\right)\\x1+x2>0\\x1.x2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{m+3}{2}>0\\\dfrac{m}{2} >0\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}m>-3\\m>0\end{matrix}\right.\)
\(< =>m>0\)
theo vi ét =>\(\left\{{}\begin{matrix}x1+x2=\dfrac{m+3}{2}\\x1.x2=\dfrac{m}{2}\end{matrix}\right.\)
\(=>A=\left|x1-x2\right|\)
\(=>A=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}\)
\(A=\sqrt{\left(\dfrac{m+3}{2}\right)^2-4\dfrac{m}{2}}=\sqrt{\dfrac{m^2+6m+9-8m}{4}}\)
\(A=\sqrt{\dfrac{\left(m-1\right)^2+8}{4}}=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+8}\)\(\ge\sqrt{2}\)=>Min A=\(\sqrt{2}\)
dấu = xảy ra <=>m=1(TM)
1. Với m=5 thì (1) có dạng
\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
2. Nếu m=0 thì (1) trở thành
\(-5x-5=0\Leftrightarrow x=-1\)
Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:
\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)
Nên phương trình (1) luôn có nghiệm với mọi m
a. Bạn tự giải
b.
Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)
Với \(m\ne0\)
\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m
Bạn xem lại đề. Với $a=1,b=2$ PT vô nghiệm.