Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
\(\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2+16>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=-6m-7\end{matrix}\right.\)
\(C=4\left(m-3\right)^2+8\left(-6m-7\right)\)
\(=4m^2-24m+36-48m-56=4m^2-72m-20\)
\(=4\left(m^2-18m+81-81\right)-20=4\left(m-9\right)^2-344\ge-344\)
Dấu ''='' xảy ra khi m = 9
\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Do đó pt luôn có nghiệm
Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)
Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)
\(A=4m^2-4m+1-4m+4\)
\(A=4m^2-8m+5\)
\(A=4\left(m-1\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\) m=1
Tick hộ nha 😘
pt có nghiệm \(< =>\Delta\ge0\)
\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)
\(< =>4m^2-4m+1-8m+8\ge0\)
\(< =>4m^2-12m+9\ge0\)
\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)
\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)
=>pt luôn có 2 nghiệm
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)
\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)
\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)
dấu"=" xảy ra<=>m=0
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Theo Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}&x_1.x_2=\frac{m}{2}&\end{cases}}\)
ĐĂT \(A=!x_1-x_2!\)
\(\Rightarrow A^2=\left(!x_1-x_2!\right)=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=\frac{\left(m+3\right)^2}{2^2}-\frac{4m}{2}\)
\(\Leftrightarrow4A^2=m^2-8m+16-16-9\)
\(\Leftrightarrow4A^2=\left(m-4\right)^2-25\ge25\)
\(Min4A^2=25\Rightarrow MinA=\frac{1}{2}\Leftrightarrow\left(m-4\right)^2=0\Leftrightarrow m=4\) gía trị cần tìm
Vậy m=4 là giá trị cần tìm
\(\Leftrightarrow4A^2=m^2-2m+9\)
\(\Leftrightarrow4A^2=\left(m-1\right)+8\ge8\)
\(Min4A^2=8\Rightarrow MinA=\sqrt{2}\)
\(Khi\left(m-1\right)^2=0\Leftrightarrow m=1\)
Vậy \(m=1\)là giá trị cần tìm
a. Khi m=2 thì (1) có dạng :
\(x^2-6\left(2-1\right)x+9\left(2-3\right)=0\\ \Leftrightarrow x^2-6x-9=0\\ \Leftrightarrow\left(x-3\right)^2=18\Leftrightarrow x-3=\pm\sqrt{18}\\ \Leftrightarrow x=3\pm3\sqrt{2}\)
Vậy với m=2 thì tập nghiệm của phương trình là \(S=\left\{3\pm3\sqrt{2}\right\}\)
b. Coi (1) là phương trình bậc 2 ẩn x , ta có:
\(\text{Δ}'=\left(-3m+3\right)^2-1\cdot9\left(m-3\right)=9m^2-18m+9-9m+27\\ =9m^2-27m+36=\left(3m-\dfrac{9}{2}\right)^2+\dfrac{63}{4}>0\)
Nên phương trình (1) luôn có 2 nghiệm x1,x2 thỏa mãn:
\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)\\x_1x_2=9\left(m-3\right)\end{matrix}\right.\left(2\right)\)
Vì
\(x_1+x_2=2x_1x_2\\ \Leftrightarrow6\left(m-1\right)=18\left(m-3\right)\Leftrightarrow m-1=3m-9\\ \Leftrightarrow2m=8\Leftrightarrow m=4\)
Vậy m=4
b) Ta có: \(\text{Δ}=\left[-6\left(m-1\right)\right]^2-4\cdot1\cdot9\left(m-3\right)\)
\(=\left(6m-6\right)^2-36\left(m-3\right)\)
\(=36m^2-72m+36-36m+108\)
\(=36m^2-108m+144\)
\(=\left(6m\right)^2-2\cdot6m\cdot9+81+63\)
\(=\left(6m-9\right)^2+63>0\forall m\)
Suy ra: Phương trình luôn có hai nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)=6m-6\\x_1\cdot x_2=9\left(m-3\right)=9m-27\end{matrix}\right.\)
Ta có: \(x_1+x_2=2x_1\cdot x_2\)
\(\Leftrightarrow6m-6=2\left(9m-27\right)\)
\(\Leftrightarrow6m-6-18m+54=0\)
\(\Leftrightarrow-12m+48=0\)
\(\Leftrightarrow-12m=-48\)
hay m=4
Vậy: m=4
1.Thế `m=2` vào pt, ta được:
\(x^2-2\left(2-1\right)x+2-5=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )
2.
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(P=\left|x_1-x_2\right|\)
\(\Leftrightarrow P^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow P^2=\left[2\left(m-1\right)\right]^2-4\left(m-5\right)\)
\(\Leftrightarrow P^2=4\left(m-1\right)^2-4\left(m-5\right)\)
\(\Leftrightarrow P^2=4m^2-8m+4-4m+20\)
\(\Leftrightarrow P^2=4m^2-12m+24\)
\(\Leftrightarrow P^2=\left(2m-3\right)^2+15\)
\(P^2\ge15\)
mà \(P\ge0\)
\(\Rightarrow Min_P=\sqrt{15}\)
Dấu "=" xảy ra khi \(2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)
Vậy \(Min_P=\sqrt{15}\) khi \(m=\dfrac{3}{2}\)
\(x^2-2(m-1)x+m-5=0\ \ (1) \\1)Thay\ m=2\ vào\ (1)\ ta\ có: \\x^2-2(2-1)x+2-5=0 \\<=>x^2-2x-3=0<=>(x+1)(x-3)=0<=>x=-1\ hoặc\ x=3 \\2)\triangle'=[-(m-1)]^2-1.(m-5)=m^2-3m+6>0\ với\ mọi\ m \\->Phương\ trình\ (1)\ luôn\ có\ 2\ nghiệm\ phân\ biệt\ với\ mọi\ m. \\Theo\ hệ\ thức\ Vi-ét\ ta\ có: \\x_1+x_2=2(m-1);x_1x_2=m-5 \)
\(Ta\ có: P^2=x_1^2-2x_1x_2+x_2^2=(x_1+x_2)^2-4x_1x_2 \\=[2(m-1)]^2-4(m-5)=4(m-\dfrac{3}{2})^2+15\ge15 \\->P\ge\sqrt{15} \\Đẳng\ thức\ xảy\ ra\ khi\ m=\dfrac{3}{2}. \\Vậy\ P\ nhỏ\ nhất\ bằng\ \sqrt{15}\ (khi\ m=\dfrac{3}{2}).\)
a, Khi m=2, phương trình trở thành:
\(2x^2-5x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy với m=2, phương trình có nghiệm \(x=\dfrac{1}{2};x=2\)
b, \(\Delta=\left(m+3\right)^2-8m=m^2-2m+9=\left(m-1\right)^2+8>0,\forall m\)
\(\Rightarrow\) Phương trình đã cho có nghiệm với mọi m
Theo định lí Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+3}{2}\\x_1x_2=\dfrac{m}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=\dfrac{m^2+6m+9}{4}\\4x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\dfrac{m^2-2m+9}{4}\)
\(\Rightarrow A=\left|x_1-x_2\right|=\dfrac{\sqrt{m^2-2m+9}}{2}=\dfrac{\sqrt{\left(m-1\right)^2+8}}{2}\ge\sqrt{2}\)
\(\Rightarrow minA=\sqrt{2}\Leftrightarrow m=1\)
pt: \(2x^2-\left(m+3\right)x+m=0\left(1\right)\)
a, khi m=2 ta có: \(2x^2-5x+2=0\)(2)
\(\Delta=\left(-5\right)^2-4.2.2=9>0\)
vậy pt(2) có 2 nghiệm phan biệt \(x3=\dfrac{5+\sqrt{9}}{2.2}=2\)
\(x4=\dfrac{5-\sqrt{9}}{2.2}=0,5\)
b,từ pt(1) có \(\Delta=\left[-\left(m+3\right)\right]^2-4m.2=m^2+6m+9-8m\)
\(=m^2-2m+9=\left(m-1\right)^2+8>0\left(\forall m\right)\)
vậy \(\forall m\) pt(1) luôn có 2 nghiệm phân biệt x1,x2
điều kiện để pt(1) có 2 nghiệm phân biệt không âm khi
\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\Delta>0\left(cmt\right)\\x1+x2>0\\x1.x2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{m+3}{2}>0\\\dfrac{m}{2} >0\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}m>-3\\m>0\end{matrix}\right.\)
\(< =>m>0\)
theo vi ét =>\(\left\{{}\begin{matrix}x1+x2=\dfrac{m+3}{2}\\x1.x2=\dfrac{m}{2}\end{matrix}\right.\)
\(=>A=\left|x1-x2\right|\)
\(=>A=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}\)
\(A=\sqrt{\left(\dfrac{m+3}{2}\right)^2-4\dfrac{m}{2}}=\sqrt{\dfrac{m^2+6m+9-8m}{4}}\)
\(A=\sqrt{\dfrac{\left(m-1\right)^2+8}{4}}=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+8}\)\(\ge\sqrt{2}\)=>Min A=\(\sqrt{2}\)
dấu = xảy ra <=>m=1(TM)