K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Sửa đề: a + 2b + 3c = 1

Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)

có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)

Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)

có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)

Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)

\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c 

=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm 

Vì a và b không âm 

=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm 

=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm 

=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.

NV
17 tháng 8 2019

Bạn ghi cụ thể 2 cái delta phẩy ra được không, nhìn dạng thì mới biết được

NV
17 tháng 8 2019

Do xét tính có nghiệm nên chỉ cần quan tâm dấu của delta phẩy, vậy chỉ cần xét dấu của 1-48bc và 1-24ac là đủ

Cộng hai cái lại ta được 2-48bc-24ac=2-24c(2b+a)

Mà a+2b+3c=1 nên 2-24c(2b+a)=2-24c(1-3c)=2-24c+72c^2

=2(1-12c+36c^2)=2(1-6c)^2 luôn không âm

Do đó ít nhất 1 trong 2 delta kia sẽ không âm

6 tháng 11 2022

6 tháng 11 2022

21 tháng 10 2017

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

21 tháng 10 2017

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi

21 tháng 9 2015

Theo bất đẳng thức Cô-Si \(a^2+\frac{1}{4}\ge a,b^2+\frac{1}{4}\ge b\to\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\) 

\(\ge\left(a+b+\frac{1}{2}\right)\left(a+b+\frac{1}{2}\right)=\left(a+b+\frac{1}{2}\right)^2\)  Dấu bằng xảy ra khi và chỉ khi \(a=b=\frac{1}{2}.\)

Áp dụng bất đẳng thức quen thuộc \(\left(x+y\right)^2\ge4xy,\) với \(x=a+\frac{1}{4},y=b+\frac{1}{4}\) ta được

\(\left(a+b+\frac{1}{2}\right)^2=\left(a+\frac{1}{4}+b+\frac{1}{4}\right)^2\ge4\left(a+\frac{1}{4}\right)\left(b+\frac{1}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right).\) Dấu bằng xảy ra khi và chỉ khi \(a+\frac{1}{4}=b+\frac{1}{4}\Leftrightarrow a=b.\)

Vậy vế trái lớn hơn hoặc bằng vế phải. Do đó mà các dấu bằng xảy ra, từ đây ta được \(a=b=\frac{1}{2}.\)

7 tháng 8 2020

làm sao viết đc căn vs phân số v mấy bn

7 tháng 8 2020

a) \(\frac{b-16}{4-\sqrt{b}}\left(b\ge0,b\ne16\right)\)

\(=\frac{\left(\sqrt{b}-4\right)\left(\sqrt{b}+4\right)}{4-\sqrt{b}}\)

\(=-\sqrt{b}-4\)

b) \(\frac{a-4\sqrt{a}+4}{a-4}\left(a\ge0;a\ne4\right)\)

\(=\frac{a-2.\sqrt{a}.2+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-2}{\sqrt{a}+2}\)

c) \(2x+\sqrt{1+4x^2-4x}\) với \(x\le\frac{1}{2}\)

\(=2x+\sqrt{\left(1-2x\right)^2}\)

\(=2x+\left|1-2x\right|=2x+1-2x=1\)

d) \(\frac{4a-4b}{\sqrt{a}-\sqrt{b}}\left(a,b\ge0;a\ne b\right)\)

\(=\frac{4\left(a-b\right)}{\sqrt{a}-\sqrt{b}}=\frac{4\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

\(=4\left(\sqrt{a}+\sqrt{b}\right)\)

21 tháng 8 2017

a)  Giả sử bất đẳng thức trên là đúng \(\Rightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)\(\Rightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)(luôn đúng với mọi a,b,c), ta có ĐPCM                            câu b tương tự nha bn!

21 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có: 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

Khi a=b=c

Bài 3:

Áp dụng BĐT C-S dạng ENgel ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

Khi \(a=b=c=\frac{1}{3}\)

Bài 4:

Áp dụng BĐT AM-GM ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\)

Nhân theo vế 3 BĐT trên ta có ĐPCM

Khi x=y=z

NV
22 tháng 6 2021

\(1=\left(a+b+c\right)^4=\left(a^2+b^2+c^2+2\left(ab+bc+ca\right)\right)^2\)

Mặt khác áp dụng \(\left(x+y\right)^2\ge4xy\)

 \(\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]^2\ge8\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

\(\Rightarrow1\ge8\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\ge8\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

\(\Leftrightarrow2abc\left(a+b+c\right)\ge0\) (hiển nhiên đúng)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;\dfrac{1}{2};\dfrac{1}{2}\right)\) và các hoán vị của chúng