Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24
p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Mà dạng 3k+1 không thể xảy ra nên p = 3k+2
Do đó, ta có: p2+2012 = (3k+2)2+2012 = (3k+2)(3k+2)+2012
= 3k(3k+2)+2(3k+2)+2012 = 9k2+6k+6k+4+2012
= 9k2+12k+2016 = 3(3k2+4k+672)
=> p2+2012 chia hết cho 3 => p2+2012 là hợp số
Cho n nguyên tố p1,p1,..,pn lớn hơn 5 thoar mãn p1^4=p2^4+..+pn^4 chia hết cho 80. CMR n > hoặc = 80
Cho n nguyên tố p1,p1,..,pn lớn hơn 5 thoar mãn p1^4=p2^4+..+pn^4 chia hết cho 80. CMR n > hoặc = 80
Cho n nguyên tố p1,p1,..,pn lớn hơn 5 thoar mãn p1^4=p2^4+..+pn^4 chia hết cho 80. CMR n > hoặc = 80
Hình như bạn viết đề bài sai hay sao ý, theo ý của mình là: \(\left(p-1\right).\left(p+1\right)⋮24\)
Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => \(\left(p-1\right).\left(p+1\right)⋮24\)\(\left(ĐPCM\right)\)
HT
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ.
=>(p+1) và (p-1) là 2 số chẵn liên tiếp.
=> (p+1).(p-1) chia hết cho 8. (1)
Mặt khác, vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 ; 3k+2 ( đ/k: k thuộc N* )
TH1: Với p=3k+1 => (p+1).(p-1)= (3k+2).3k chia hết cho 3.(vì 3k chia hết cho 3)
TH2: Với p=3k+2 => (p+1).(p-1)= 3.(k+1).(3k-1) chia hết cho 3 (vì 3k chia hết cho 3)
Từ 2 TH trên => (p+1).(p-1) chia hết cho 3 (2)
Từ (1) và (2) => (p+1).(p-1) chia hết cho 8 và chia hết cho 3.
Mà (8,3)=1 => (p+1).(p-1) chia hết cho 8.3=24
=> (p+1).(p-1) chia hết cho 24.
Vậy (p+1).(p-1) chia hết cho 24.
CHÚC BẠN HOK TỐT!!!!