Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như bạn viết đề bài sai hay sao ý, theo ý của mình là: \(\left(p-1\right).\left(p+1\right)⋮24\)
Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => \(\left(p-1\right).\left(p+1\right)⋮24\)\(\left(ĐPCM\right)\)
HT
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ.
=>(p+1) và (p-1) là 2 số chẵn liên tiếp.
=> (p+1).(p-1) chia hết cho 8. (1)
Mặt khác, vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 ; 3k+2 ( đ/k: k thuộc N* )
TH1: Với p=3k+1 => (p+1).(p-1)= (3k+2).3k chia hết cho 3.(vì 3k chia hết cho 3)
TH2: Với p=3k+2 => (p+1).(p-1)= 3.(k+1).(3k-1) chia hết cho 3 (vì 3k chia hết cho 3)
Từ 2 TH trên => (p+1).(p-1) chia hết cho 3 (2)
Từ (1) và (2) => (p+1).(p-1) chia hết cho 8 và chia hết cho 3.
Mà (8,3)=1 => (p+1).(p-1) chia hết cho 8.3=24
=> (p+1).(p-1) chia hết cho 24.
Vậy (p+1).(p-1) chia hết cho 24.
CHÚC BẠN HOK TỐT!!!!
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Bậy rồi nha!
4 lớn hơn 3 mà:
42 - 1 hay 42-1 (nếu cái trước không pphair ý bạn) cũng đâu chia hết cho 24 đâu.
* CM m^2-1\(⋮\)3
vì 1 SCP :3 dư 0 hoặc 1 mà m là SNT >3=>m^2:3 dư 1=>m^2-1\(⋮\)3 (1)
*CM m^2-1\(⋮\)8
vì 1 SCP :8 dư 0,1,4 mà p là SNT >3 => m^2:8 dư 1 => m^2-1\(⋮\)8(2)
từ (1) và (2) và (3,8)=1=> m^2-1\(⋮\)24=>ĐPCM
do m ;m+k ; m+2k là số nguyên tố >3
=> m;m+k;m+2k lẻ
=> 2m+k chẵn =>⋮⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2(p∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)
với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số
với k=3a+2 => m+k= 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k⋮6
Do m , m + k , m+2k là số nguyên tố > 3
=> m , m+k , m+2k lẻ
=> 2m+k chẵn => k chia hết cho 2
Mặt khác m là số nguyên tố > 3
=> m có dạng 3p+1 và 3p +2 ( p thuộc N* )
xét m = 3p + 1
Ta lại có k có dạng 3a ; 3a+1 ; 3a+2 ( a thuộc N* )
Với k = 3a+1 ta có 3p +1+2 ( 3a +1) = 3(p+1+3a)loại vì m+2k là hợp số
Với k = 3a+ 2 => m+k = 3(p+a+1) loại
=> k=3a
Tương tự vs 3p +2
=> k=3a
=> k chia hết cho 3
Mà (3;2) = 1
Nên => k chia hết cho 6
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Ta có:\(\left(p-1\right)\left(p+1\right)=p^2-1\)
Vì p là số nguyên tố và p>3 nên \(\left[\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)
Nếu p=3k+1 \(\Rightarrow p^2\equiv1\left(mod3\right)\Rightarrow p^2-1⋮3\)
Nếu p=3k+2\(\Rightarrow p^2\equiv1\left(mod3\right)\Rightarrow p^2-1⋮3\)
Vậy \(p^2-1⋮3hay\left(p-1\right)\left(p+1\right)⋮3\left(1\right)\)
Lại có:p>3 =>p-1 và p+1 chẵn => p-1 và p+1 là 2 số chẵn liên tiếp. Mà 2 số chẵn liên tiếp thì luôn chia hết cho 8 nên\(\left(p-1\right)\left(p+1\right)⋮8\left(2\right)\)
Từ (1),(2)và (3,8)=1 nên (p-1)(p+1)\(⋮24\)
- Gọi số nguyên tố lớn hơn 3 là p có dạng 3k + 1; 3k + 2
+, \(p^2-1=\left(3k+1\right)^2-1=9k^2+6k+1-1=3\left(3k^2+2k\right)⋮3\)
\(+,p^2-1=\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)
=> \(p^2-1\) chia hết cho 3 .
Lại có : \(p^2-1=\left(p+1\right)\left(p-1\right)\)
=> \(p^2-1\) chia hết cho 8
=> ĐPCM
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24