Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Gọi x là chiều dài đoạn thép thứ nhất, 0 < x < 10
=> Cạnh hình tứ diện là (tứ diện là đều)
Cạnh hình lập phương là 10 - x 12
Diện tích xung quanh của tứ diện là
Diện tích xung quanh của lập phương là
Tổng S 1 + S 2 đạt giá trị nhỏ nhất khi
Đáp án D
Gọi O = AC ∩ BD
Vì ABCD là hình thoi nên AC ⊥ BD tại O.
Tam giác SBD cân tại S nên SO ⊥ BD.
Suy ra BD ⊥ (SAC)
Do => SO = OC
Đặt
Bảng biến thiên:
x |
0 |
|
+ 0 - |
|
|
Vậy
Đáp án C
Tứ diện ABCD có chiểu cao không đổi do đó thể tích nhỏ nhất khi diện tích tam giác ABC nhỏ nhất. Vì AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện nên tâm I của mặt cầu nằm trong tam giác ABC
Đáp án D
Gọi tứ diện đã cho là S. ABC. Ta có
Suy ra, V S . A B C đạt GTLN khi và chỉ khi sin ϕ = 1
=> Chọn phương án D.