K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

14 tháng 4 2017

8 tháng 4 2017

Đáp án D

Gọi tứ diện đã cho là S. ABC. Ta có

Suy ra,  V S . A B C  đạt GTLN khi và chỉ khi  sin ϕ = 1

=> Chọn phương án D.

25 tháng 11 2017

Đáp án C

Tứ diện ABCD có chiểu cao không đổi do đó thể tích nhỏ nhất khi diện tích tam giác ABC nhỏ nhất. Vì  AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện nên tâm I của mặt cầu nằm trong tam giác ABC

Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) . Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều...
Đọc tiếp

Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) .

Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều là các tam giác vuông . | b ) Gọi M , P lần lượt là hình chiếu của A lên SB , SD . Tìm giao điểm N của SC với mặt phẳng ( APM ) . CMR : SC vuông góc với mặt phẳng ( APM ) , AN vuông góc với MP . c ) Tính diện tích thiết diện tạo bởi mặt phẳng ( APM ) với hình chóp .

Bài 3 . Cho hình chóp S . ABCD đáy ABCD là hình thang vuông tại A và D , AD = DC = a , AB = 2a , mp ( SAB ) vuông góc với ( ABC ) , tam giác SAB đều . a ) Xác định và tính chiều cao của hình chóp . b ) Xác định và tính góc giữa các cạnh bên và mặt đáy của hình chóp . c ) Gọi I là trung điểm của AB . Xác định và tính khoảng cách giữa SA và IC , SD và IC . d ) Xác định và tính diện tích thiết diện tạo bởi mặt phẳng ( P ) đi qua | trung điểm J của BC song song với AB và vuông góc với mp ( ABC ) cắt hình chóp . Bài 4 . Cho hình chóp S . ABC ; SA , SB , SC đối mặt vuông góc , SA = 2 , AC = av3 , BC = 2a . a ) Tính khoảng cách từ S đến mặt phẳng ( ABC ) . b ) Gọi H là hình chiếu vuông góc của S lên mặt phẳng ( ABC ) . CMR : H là trực tâm của tam giác ABC . c ) Xác định và tính góc giữa mặt phẳng ( SBC ) và ( ABC ) . d ) Tính khoảng cách giữa các đường thẳng AC và SB , SC và AB .

Bài 5 . Cho hình vuông ABCD . Gọi S là điểm trong không gian sao cho SAB là tam giác đều và mp ( SAB ) vuông góc với mp ( ABCD ) . a ) CMR : mp ( SAB ) 1 mp ( SAD ) ; mp ( SAB ) 1 mp ( SBC ) . b ) Tính góc giữa hai mặt phẳng ( SAD ) và ( SBC ) . c ) Gọi H và I lần lượt là trung điểm của AB và BC . CMR : mp ( SHC ) 1 mp ( SDI ) .

Bài 6 . Cho tứ diện SABC , hai mặt phẳng ( SAB ) và ( SBC ) vuông góc với nhau và SA 1 mp ( ABC ) , SB = a2 , góc BSC bằng 45° . a ) CMR : BC 1 SB . b ) Tìm điểm cách đều bốn điểm S , A , B , C . a

0
12 tháng 4 2017

Chọn đáp án A

14 tháng 7 2017

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x-6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?3. Cho lim \(_{x-2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b4. Cho hàm số y=f(x) xác định và có...
Đọc tiếp

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x->6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)

2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?

3. Cho lim \(_{x->2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b

4. Cho hàm số y=f(x) xác định và có đạo hàm trên tập số thực. Biết f'(1)=5 và f(1)=6. Tìm giới hạn lim \(_{x->1}\)\(\dfrac{f^2\left(x\right)-f\left(x\right)-30}{\sqrt{x}-1}\)

5. Cho tam giác ABC có 2 trung tuyến kẻ từ A đến B vuông góc với nhau. Khi đó tỉ số \(\dfrac{AC+BC}{AB}\)đạt giá trị lớn nhất bằng bao nhiêu(làm tròn đến hàng phần trăm)

6. Cho tứ diện ABCD có (ACD) vuông góc (BCD), AC=AD=BC=BD=a và CD=2x. Gọi I và J lần lượt là trung điểm của AB và CD. Với giá trị nào của x thì (ABC) vuông góc với (ABD)?

1
11 tháng 4 2021

1/ L'Hospital:

\(=\lim\limits_{x\rightarrow6}f'\left(x\right)=f'\left(6\right)=2\)

3/ \(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{3}{2\sqrt{3x+3}}}{1}=\dfrac{1}{2}\Rightarrow2a-b=0\)

4/ \(=\lim\limits_{x\rightarrow1}\dfrac{2f\left(x\right).f'\left(x\right)-f'\left(x\right)}{\dfrac{1}{2\sqrt{x}}}=\dfrac{2.6.5-5}{\dfrac{1}{2}}=110\)

2/ \(x_0=-3\Rightarrow y_0=\dfrac{-3-1}{-3+2}=\dfrac{-4}{-1}=4\)

\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x+1}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)

\(\Rightarrow y'\left(-3\right)=3\)

\(\Rightarrow pttt:y=3\left(x+3\right)+4=3x+13\)

\(x=0\Rightarrow y=13;y=0\Rightarrow x=-\dfrac{13}{3}\)

\(\Rightarrow S=\dfrac{1}{2}.\left|x\right|\left|y\right|=\dfrac{1}{2}.\dfrac{13}{3}.13=\dfrac{169}{6}\left(dvdt\right)\)

P/s: Câu 5,6 bỏ qua nhé, toi ngu hình học :b

11 tháng 4 2021

 cảm ơn bạn nhé =))