K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

\(A\cup B=\left(-2;2\right)\\ A\cap B=\left\{0\right\}\\ A\B=\left(-2;0\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

\(A\cup B=(-2;2)\)

\(A\cap B=\left\{0\right\}\)

\(A\setminus B=(-2;0)\)

Về hình vẽ trên trục số thì đơn giản rồi. Bạn có thể tự vẽ.

11 tháng 10 2021

\(A\cup B=\left(-2;2\right)\)

\(A\cap B=0\)

A\B=(-2;0)

11 tháng 10 2021

\(A\cup B=\left(-2;2\right)\)

\(A\cap B=\left\{0\right\}\)

\(A\B=\left(-2;0\right)\)

16 tháng 5 2021

\(\left\{{}\begin{matrix}a=0\\b=\dfrac{-4}{-2}=2\end{matrix}\right.\)

\(I\left(0,2\right)\)

\(R=\sqrt{0^2+2^2-1}=\sqrt{3}\)

 

2 tháng 7 2019

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

*) Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Phương trình đường tròn (C) có dạng: (x-2 ) 2  + (y-b ) 2  = b 2

*) Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:

IB = 5 ⇒ Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

⇒ (2 - 6 ) 2  + (b - 4 ) 2  = 25

⇒ 16 + (b - 4 ) 2  = 25

⇒ (b - 4 ) 2  = 9

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

+) Với b = 7, phương trình đường tròn (C) là (x - 2 ) 2  + (y - 7 ) 2  = 49

+) Với b = 1, phương trình đường tròn (C) là (x - 2 ) 2  + (y + 1 ) 2  = 1

 

Vậy phương trình đường tròn (C) là (x - 2 ) 2  + (y - 7 ) 2  = 49 hoặc (x - 2 ) 2  + (y + 1 ) 2  = 1.

NV
30 tháng 12 2020

\(A=[4;+\infty)\)

\(B=\left(6;9\right)\)

\(B\backslash A=\varnothing\)

28 tháng 1 2022

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

 Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Phương trình đường tròn (C) có dạng: \(\left(x-2\right)^2+\left(y-b\right)^2=b^2\)

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

 Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:

\(IB=5\Rightarrow\sqrt{\left(2-6\right)^2+\left(b-4\right)^2}=5\)

\(\Rightarrow\left(2-6\right)^2+\left(b-4\right)^2=25\)

\(\Rightarrow16+\left(b-4\right)^2=25\)

\(\Rightarrow\left(b-4\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}b-4=3\\b-4=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=7\\b=-1\end{matrix}\right.\)

Với b = 7, phương trình đường tròn (C) là \(\left(x-2\right)^2+\left(y-7\right)^2=49\)

 Với b = 1, phương trình đường tròn (C) là  \(\left(x-2\right)^2+\left(y-2\right)^2=1\)

Vậy phương trình đường tròn (C) là \(\left(x-2\right)^2+\left(y-7\right)^2=49\) hoặc \(\left(x-2\right)^2+\left(y-2\right)^2=1\)