K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

 Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Phương trình đường tròn (C) có dạng: \(\left(x-2\right)^2+\left(y-b\right)^2=b^2\)

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

 Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:

\(IB=5\Rightarrow\sqrt{\left(2-6\right)^2+\left(b-4\right)^2}=5\)

\(\Rightarrow\left(2-6\right)^2+\left(b-4\right)^2=25\)

\(\Rightarrow16+\left(b-4\right)^2=25\)

\(\Rightarrow\left(b-4\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}b-4=3\\b-4=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=7\\b=-1\end{matrix}\right.\)

Với b = 7, phương trình đường tròn (C) là \(\left(x-2\right)^2+\left(y-7\right)^2=49\)

 Với b = 1, phương trình đường tròn (C) là  \(\left(x-2\right)^2+\left(y-2\right)^2=1\)

Vậy phương trình đường tròn (C) là \(\left(x-2\right)^2+\left(y-7\right)^2=49\) hoặc \(\left(x-2\right)^2+\left(y-2\right)^2=1\)

 

2 tháng 7 2019

Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.

Gọi I(a;b) là tâm của đường tròn (C).

*) Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.

Phương trình đường tròn (C) có dạng: (x-2 ) 2  + (y-b ) 2  = b 2

*) Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:

IB = 5 ⇒ Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

⇒ (2 - 6 ) 2  + (b - 4 ) 2  = 25

⇒ 16 + (b - 4 ) 2  = 25

⇒ (b - 4 ) 2  = 9

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 1)

+) Với b = 7, phương trình đường tròn (C) là (x - 2 ) 2  + (y - 7 ) 2  = 49

+) Với b = 1, phương trình đường tròn (C) là (x - 2 ) 2  + (y + 1 ) 2  = 1

 

Vậy phương trình đường tròn (C) là (x - 2 ) 2  + (y - 7 ) 2  = 49 hoặc (x - 2 ) 2  + (y + 1 ) 2  = 1.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

17 tháng 4 2023

(x-x0)^2+(y-y0)^2=R^2

I(x;x-6)

=> (x-6)^2+(x-6-4)^2=R^2

(x-4)^2+(x-6)^2=R^2

=> x^2-12x+36+x^2-20x+100=x^2-8x+16+x^2-12x+36

=>12x=84

=>x=7

=>R^2=10

`=>(7-x0)^2+(1-y0)^2=10`

 

18 tháng 8 2018

Đáp án B

Do đường tròn (C)  tiếp xúc với đường thẳng AB tại B và tiếp xúc với đường thẳng AC tại C

Nên tam giác ABC  cân tại A

tâm I của (C)  thuộc Oy nên I(0; y0)

Do:

Mặc khác:

Vậy phương trình của là:

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)

Bài 2:

a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)

Phương trình (C) là:

(x+2)^2+(y-1)^2=2^2=4

Bài 1:

a: I thuộc Δ nên I(x;-2x-3)

IA=IB

=>IA^2=IB^2

=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)

=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49

=>26x+41=32x+53

=>-6x=-12

=>x=2

=>I(2;-7): R=IA=căn 113

Phương trình (C) là:

(x-2)^2+(y+7)^2=113

2: vecto IA=(7;-8)

Phương trình tiếp tuyến là:

7(x+5)+(-8)(y-1)=0

=>7x+35-8y+8=0

=>7x-8y+43=0

 

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{545}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)

Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)

\(\Leftrightarrow...\)