K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

A B O C P 1 2 1 2

a) Vì OP//AC(gt)

=> \(\widehat{O_2}=\widehat{C_1}\) (cặp góc soletrong) (1)

\(\widehat{A_2}=\widehat{O_1}\) (cặp góc đồng vị) (2)

Xét ΔOAC có: OA=OC(gt)

=> ΔOAC cân tại O

=> \(\widehat{A_2}=\widehat{C_1}\) (3)

Từ (1);(2);(3) suy ra:

\(\widehat{O_1}=\widehat{O_2}\)

Xét ΔOBP và ΔOCP có:

OP: cạnh chung

\(\widehat{O_1}=\widehat{O_2}\left(cmt\right)\)

OB=OC(gt)

=> ΔOBP=ΔOCP(c.g.c)

b) Vì: ΔOBP=ΔOCP(cmt)

=> \(\widehat{OBP}=\widehat{OCP}\)

Mà: \(\widehat{OCP}=90^o\left(gt\right)\)

=> \(\widehat{OBP}=90^o\)

=>PB là tiếp tuyến của (O)

9 tháng 10 2019

A C P B O 1 2 2 1

a ) Vì OP // AC (gt)

\(\Rightarrow\widehat{O_2}=\widehat{C_1}\) ( cặp góc so le trong ) (1)

\(\widehat{A}_2=\widehat{O}_1\) ( cặp goc đồng vị ) (2)

Xét \(\Delta OAC\) có : OA = OC (gt)

\(\Rightarrow\Delta OAC\) cân tại O

\(\Rightarrow\widehat{A}_2=\widehat{C}_1\) (3)

Từ (1) ; (2) ; (3) suy ra :
\(\widehat{O}_1=\widehat{O}_2\)

Xét \(\Delta OBP\) và \(\Delta OCP\) có :

OP : cạnh chung

\(\widehat{O}_1=\widehat{O}_2\left(cmt\right)\)

OB = OC (gt)

\(\Rightarrow\Delta OBP=\Delta OCP\left(cmt\right)\)

\(\Rightarrow\widehat{OBP}=\widehat{OCP}\) 

Mà : \(\widehat{OCP}=90^o\) ( gt)

\(\Rightarrow\widehat{OBP}=90^o\)

\(\Rightarrow\) PB là tiếp tuyến của đt (O)

Chúc bạn học tốt !!!

29 tháng 12 2015

qwertyuiop[ư\';lkjhgfdsazxcvbnm,./\';lkjhgfdsaqwwertyuiop[ư

19 tháng 4 2019

\(\widehat{MKH}=\widehat{MCH}\)

c) Tam giác COA=tam giác BOA ( tự chứng minh)

=> \(\widehat{COA}=\widehat{BOA}\)(1)

Ta có: MK//OC ( cùng vuông AC)

     MH//OA ( cùng vuông BC)

=> \(\widehat{KMH}=\widehat{AOC}\)(2)

Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)

Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)

Tứ giác KMHC nội tiếp ( tự chứng minh)

=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)

Tứ giác MIBH nội tiếp ( tự chứng minh)

=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)

Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)

Từ (5), (6), (7)

=> \(\widehat{MKH}=\widehat{MHI}\)(8)

Xét tam giác KMH và tam giác HMI có:

\(\widehat{KMH}=\widehat{HMI}\)(theo (4))

\(\widehat{MKH}=\widehat{MHI}\)( theo (8)

=> tam giác KMH đông dạng tam giác HMI

a)

Theo tính chất 2 tiếp tuyến cắt nhau (MAMA, MCMC) thì MA=MCMA=MC

Mà OA=OC=ROA=OC=R

⇒MO⇒MO là đường trung trực của ACAC

⇒MO⊥AC⇒MEAˆ=900(1)⇒MO⊥AC⇒MEA^=900(1)

Lại có:

ADBˆ=900ADB^=900 (góc nt chắn nửa đường tròn)

⇒MDAˆ=1800−ADBˆ=900(2)⇒MDA^=1800−ADB^=900(2)

Từ (1);(2) ⇒MEAˆ=MDAˆ⇒MEA^=MDA^. Mà 2 góc này cùng nhìn cạnh MAMA nên tứ giác AMDEAMDE là tgnt.

2 tháng 5 2019

cảm ơn bn

nhưng mik còn câu c thôi

mà bn chép mạng cx chọn cái chép đi chứ, chép thừa r