Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (o) có :
Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)
Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)
xét tứ giác ABOC có:
góc OBA+góc OCA =180 (cmt)
=> tứ giác ABOC là tứ giác nt (dhnb)
Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90
MI vuông góc với AB (theo đề bài )=>góc BIM = 90
Xét tứ giác BIMH có:
góc BHM+BIM=180 (cmt)
=>tứ giác BIMH là tứ giác nt
2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :
MH^2=MI . MK
3)
CM góc thì mình không biết đâu nhé!
a)Vì `MI bot BC`
`=>hat{MIC}=90^o`
`HM bot HC`
`=>hat{MHC}=90^o`
`=>hat{MHC}+hat{MIC}=180^o`
`=>` tg HMIC nt
b)Vì HMIC nt
`=>hat{HCM}=hat{MIH}`
Mà `hat{HCM}=hat{MBC}`(góc nt và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung MC nhỏ)
`=>hat{MIH}=hat{MCB}`
Đoạn còn lại thì mình không biết điểm F ở đâu ker
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}+\widehat{BCK}=180^0\)
nên BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
\(\widehat{MKH}=\widehat{MCH}\)
c) Tam giác COA=tam giác BOA ( tự chứng minh)
=> \(\widehat{COA}=\widehat{BOA}\)(1)
Ta có: MK//OC ( cùng vuông AC)
MH//OA ( cùng vuông BC)
=> \(\widehat{KMH}=\widehat{AOC}\)(2)
Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)
Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)
Tứ giác KMHC nội tiếp ( tự chứng minh)
=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)
Tứ giác MIBH nội tiếp ( tự chứng minh)
=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)
Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)
Từ (5), (6), (7)
=> \(\widehat{MKH}=\widehat{MHI}\)(8)
Xét tam giác KMH và tam giác HMI có:
\(\widehat{KMH}=\widehat{HMI}\)(theo (4))
\(\widehat{MKH}=\widehat{MHI}\)( theo (8)
=> tam giác KMH đông dạng tam giác HMI