K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

xét ∆AMB và ∆AMC có : AM chung

AB = AC (gt)

BM = CM do M là trung điểm của BC (Gt)

=> ∆AMB = ∆AMC (c-c-c)

b, ∆AMB = ∆AMC (câu a)

=> ^AMB = ^AMC (định nghĩa)

có ^AMB + ^AMC = 180 (kề bù)

=> ^AMB = 90

=> AM _|_ BC (định nghĩa)

c, CD _|_ BC (gt)

AM _|_ BC (gt)

CD không trùng AM 

=> CD // AM

11 tháng 8 2019

A I K D E B C

a, Trước hết ta thấy \(\widehat{IAC}=\widehat{BAK}=140^0\)

\(\Delta IAC=\Delta BAK(c.g.c)\Rightarrow IC=BK\)

b, Gọi D là giao điểm của AB và IC,gọi E là giao điểm của IC và BK . Xét \(\Delta AID\)và \(\Delta EBD\), ta có : \(\widehat{AID}=\widehat{EBD}\)do \(\Delta IAC=\Delta BAK\)

\(\widehat{ADI}=\widehat{EDB}\)đối đỉnh nên \(\widehat{IAD}=\widehat{BED}\)

Do \(\widehat{ADI}=90^0\)nên \(\widehat{IAD}=90^0\). Vậy \(IC\perp BK\).

Cho tam giác ABC vuông tại A.M là 1 điểm thuộc cạnh BC . Qua M dựng các đoạn thẳng MD,ME sao cho AB là đường trung trực của đoạn thẳng MD và AC là đường trumg trực của đoạn thẳng ME               a) Với điểm M không trùng với điểm B và C. Chứng minh rằng: AM =AD= AE                                                  b) Với M bất kì. Chứng minh rằng:Ba điểm A, D ,E thẳng hàng                                          ...
Đọc tiếp

Cho tam giác ABC vuông tại A.M là 1 điểm thuộc cạnh BC . Qua M dựng các đoạn thẳng MD,ME sao cho AB là đường trung trực của đoạn thẳng MD và AC là đường trumg trực của đoạn thẳng ME               a) Với điểm M không trùng với điểm B và C. Chứng minh rằng: AM =AD= AE                                                  b) Với M bất kì. Chứng minh rằng:Ba điểm A, D ,E thẳng hàng                                                                          c) Cho tam giác ABC cố định. Tìm vị trí của điểm M trên cạnh BC sao cho DE có độ dài ngắng nhất

       Các cậu giúp mình nha😊😊😊😊😊😉😉😉😉😦😦😦😦😦😍😍😍😍😘😘😘😘😘😗😗☺☺☺☺☺☺☺

3
4 tháng 6 2017

Cậu tự vẽ hình nha !

a) Vì AB là đường trung trực của DM

=> AD = AM (tính chất 1 điểm trên đường trung trực)   (1)

Tương tự với AC là trung trực của ME

=> AM = AE  (2) 

Từ (1) và (2) 

=> AM = AD = AE

b) Từ (1) ta suy ra \(\Delta ADM\) cân tại A

Từ (2) ta cũng có \(\Delta AEM\) cân tại A

Vì trong tam giác cân , đường trung trực , phân giác , trung tuyến , đường cao đều trung nhau 

=> Với AB,AC là đường trung trực tương ứng thì AB,AC cũng là phân giác tương ứng 

=> \(\widehat{DAB}=\widehat{MAB}=\frac{\widehat{MAD}}{2}\) và \(\widehat{MAC}=\widehat{CAE}=\frac{\widehat{MAE}}{2}\)

Ta có :

\(\widehat{BAM}+\widehat{MAC}=90^0\)

\(2\widehat{BAM}+2\widehat{MAC}=180^0\)

\(\widehat{MAD}+\widehat{MAE}=180^0\)

=> Ba điểm thẳng hàng

4 tháng 6 2017

éo giúp

a) Xét ΔAMB và ΔAMC có

AB=AC(ΔABC cân tại A)

AM là cạnh chung

BM=CM(do M là trung điểm của BC)

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Ta có: ΔAMB=ΔAMC(cmt)

\(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)

⇒AM⊥BC(đpcm)

c) Ta có: AM⊥BC(cmt)

DC⊥BC(cmt)

Do đó: AM//DC(định lí 1 từ vuông góc tới song song)

Bài 3: 

a: Xét ΔAKB và ΔAKC có 

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

b: Ta có: ΔABC cân tại A

mà AK là đường trung tuyến

nên AK là đường cao

1 tháng 8 2017

a) Ta có MN vuông góc với AB ( do MN là đường trung trực của đoạn thẳng AB theo giả thuyết nên suy ra)
   và đường thẳng m cũng vuông góc với đoạn thẳng AB ( theo giả thiết)
nên từ đó ta suy ra MN//m (đpcm)
b) Từ MN//m ta suy ra MIC=ICB (hai góc so le trong)
                             mà ICB= 60 độ => MIC=60 độ 
c) Ta có HIB= HIN+NIB
    Mặt khác HIN=MIC=60 độ ( so le  trong)
       và NIB=90 độ (gt) 
  suy ra HIB= 60+90=150 độ
d) Vì theo giả thiết ta có đường thẳng a đi qua C và song song với MN và điểm C lại nằm trên cùng một đường thẳng m với điểm B mà đường thẳng m lại song song với đường thẳng MN nên suy ra đường thẳng a trùng với đường thẳng m và đi qua B

19 tháng 12 2015

a) Xét tam giác AKB và tam giác AKC

. AK cạnh chung

. AB =AC (gt)

. BK = KC (gt )

Vậy tam giác AKB = tam giác AKC

19 tháng 12 2015

Ta có : AK vuông góc BC

            CM vuông góc BC

vậy : AK song song CM