Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ∆AMB và ∆AMC có : AM chung
AB = AC (gt)
BM = CM do M là trung điểm của BC (Gt)
=> ∆AMB = ∆AMC (c-c-c)
b, ∆AMB = ∆AMC (câu a)
=> ^AMB = ^AMC (định nghĩa)
có ^AMB + ^AMC = 180 (kề bù)
=> ^AMB = 90
=> AM _|_ BC (định nghĩa)
c, CD _|_ BC (gt)
AM _|_ BC (gt)
CD không trùng AM
=> CD // AM
a) Vì AB=AC (gt) \(\Rightarrow\Delta ABC\) cân tại A
Xét \(\Delta ABM\) và \(\Delta ACM \) có:
AB=AC (gt)
\(\widehat{ABM}=\widehat{ACM}\) (vì \(\Delta ABC\) cân tại A)
BM=CM (vì M là trung điểm của BC)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)
b) Vì \(\Delta AMB=\Delta AMC\Rightarrow\widehat{AMB}=\widehat{AMC} \)
Mà \(\widehat{AMB}+\widehat{AMC=180^0}\) (2 góc kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)
c) Vì \(AM\perp BC\left(cmt\right), DC\perp BC\left(gt\right)\Rightarrow AM\text{//}DC\)
Hình tự vẽ...
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
AB = AC ( giả thiết )
AM: Cạnh chung
AM = BM ( Vì M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)
Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)
=> AM vuông góc với BC
b) Vì \(CE\perp AB\) và \(AM\perp BC\)
=> EC // AM ( Từ vuông góc đến song song )
c) Vì tam giác ABC vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)
\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)
Xét \(\Delta ACE\) và \(\Delta ACE\) , có:
\(\widehat{ACE}=\widehat{ACB}=45^0\)
\(\widehat{CAE}=\widehat{BAC}=90^0\)
AC: Cạnh chung
=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)
=> CE = CB (hai cạnh tương ứng)
a) Xét tam giác AMB và AMC có:
AM chung
AB=AC (tam giác ABC cân tại A)
\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)
b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC
Vì trong tam giác cân đường trung tuyến trùng với đường cao
=> AM là đường cao tam giác ABC
=> AM _|_ BC (đpcm)
Bài làm
a) Xét tam giác AMB và tam giác AMC có:
^MAB = ^MAC ( Do AM phân giác )
AB = AC ( Do ∆ABC cân )
^B = ^C ( Do ∆ABC cân )
=> ∆AMB = ∆AMC ( g.c.g )
b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )
=> ^AMB = ^AMC
Mà ^AMB + ^AMC = 180° ( hai góc kề bù )
=> ^AMB = ^AMC = 180°/2 = 90°
=. AM vuông góc với BC.
Cách 2: Vì tam giác ABC cân tại A
Mà AM là tia phân giác
=> AM đồng thời là đường cao.
=> AM vuông góc với BC .
c) Vì ∆ABC cân tại A
Mà AM vừa là đường phân giác, vừa là đường cao.
=> AM là đường trung tuyến.
=> BM = MC
Mà BM + MC = BC = 6
=> BM = MC = 6/2 = 3 ( cm )
Xét tam giác AMB vuông tại M có:
Theo định lí Pytago có:
AB² = AM² + BM²
=> AM² = AB² - BM²
Hay AM² = 5² - 3²
=> AM² = 25 - 9
=> AM² = 16
=> AM = 4 ( cm )
d) Xét tam giác ABC có:
AM vuông góc với BC
AH vuông góc với AC
Mà AM cắt AH tại H
=> H là trực tâm.
=> CH vuông góc với AB . ( Đpcm )
a) Xét tam giác AKB và tam giác AKC
. AK cạnh chung
. AB =AC (gt)
. BK = KC (gt )
Vậy tam giác AKB = tam giác AKC
Ta có : AK vuông góc BC
CM vuông góc BC
vậy : AK song song CM
a) Xét ΔAMB và ΔAMC có
AB=AC(ΔABC cân tại A)
AM là cạnh chung
BM=CM(do M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Ta có: ΔAMB=ΔAMC(cmt)
⇒\(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)
⇒AM⊥BC(đpcm)
c) Ta có: AM⊥BC(cmt)
DC⊥BC(cmt)
Do đó: AM//DC(định lí 1 từ vuông góc tới song song)