K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

\(\frac{2018}{ab+2018a+2018}+\frac{b}{bc+a+2018}+\frac{c}{ac+c+1}\)

\(a.b.c=2018\Rightarrow a,b,c\ne0\)

Ta có \(\frac{2018}{ab+2018a+2018}\Rightarrow\frac{2018}{b+2018+bc}\)

\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{2018+bc+b}\)

\(\Rightarrow S=\frac{2018}{b+2018+bc}+\frac{b}{bc+b+2018}+\frac{bc}{2018+bc+b}=\frac{2018+b+bc}{b+2018+bc}=1\)

để nghĩ tiếp

22 tháng 1 2019

làm tiếp 

\(\frac{2013x+1}{2014x-2014}=\frac{2013\left(x-1\right)+2014}{2014\left(x-1\right)}=\frac{2013}{2014}+\frac{1}{x-1}\)

\(B_{max}\Leftrightarrow\frac{1}{x-1}max\)

+) Nếu x >1 thì x-1 >0 \(\Rightarrow\frac{1}{x-1}>0\)

+) Nếu x<1 thì x-1 <0 \(\Rightarrow\frac{1}{x-1}< 0\)

Xét x > 1 ta có 

\(\frac{1}{x-1}max\Rightarrow x-1\)là số nguyên dương nhỏ nhất 

\(\Rightarrow x-1=1\Rightarrow x=2\)

Vậy \(Bmax=1\frac{2018}{2019}\Leftrightarrow x=2\)

21 tháng 1 2019

\(M=\frac{2018a}{ab+2018a+2018}+\frac{b}{bc+b+2018}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{2018a}{ab+2018a+2018}+\frac{ab}{a\left(bc+b+2018\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Rightarrow M=\frac{2018a}{ab+2018a+2018}+\frac{ab}{ab+2018a+2018}+\frac{1}{ab+2018a+2018}\)

\(\Rightarrow M=\frac{2018a+ab+1}{2018a+ab+1}=1\)

21 tháng 1 2019

Do : \(abc=2018\)nên : \(a,b,c\ne0\)

Ta có : \(M=\frac{2018a}{ab+2018a+2018}+\frac{b}{bc+b+2018}+\frac{c}{ac+c+1}\)

\(=\frac{2018a}{ab+2018a+2018}+\frac{ab}{abc+ab+2018a}+\frac{abc}{a^2bc+abc+ab}\)

\(=\frac{2018a}{ab+2018a+2018}+\frac{ab}{2018+ab+2018a}+\frac{2018}{2018+ab+2018a}\)

\(=\frac{2018a+ab+2018}{ab+2018a+2018}=1\)

3 tháng 4 2018

A=a/2018-c +b/2018-a +c/2018-b

A= a/a+b + b/b+c + c/c+a

Nhận thấy: a/a+b< a/a+b+c; b/b+c<b/a+b+c; c/c+a<c/a+b+c

Do đó A= a/a+b  +  b/b+c  +  c/c+a < a/a+b+c  +  b/a+b+c  +  c/a+b+c = a+b+c/a+b+c=1

=>A>1(1)

áp dụng t/c:a/b<1=>a/b<a+n/b+n(a,b,n khác 0), ta có:

a/a+b < a+c/a+b+c ; b/b+c < b+a/b+c+a ; c/c+a < c+b/c+a+b

Do đó :A= a/a+b  +  b/b+c  +  c/c+a < a+c/a+b+c  +  b+a/a+b+c  +  c+b/a+b+c= 2(a+b+c)/a+b+c=2

=>A<2(2)

từ (1);(2)=>1<A<2=> A không thuộc Z=>ĐPCM. chúc bạn học tốt

3 tháng 4 2018
Thanks bn nha