K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Từ ab/(a+b)=bc/(b+c). Nhân chéo suy ra a=c

Chứng minh tương tự suy ra  a=b=c

Thay hết thành a vào M tính ra M=1

2 tháng 1 2016

\(M=\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab+bc+ca}{a+b+b+c+c+a}=\frac{10a+b+10b+c+10c+a}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}\)

\(=\frac{\left(10a+a\right)+\left(10b+b\right)+\left(10c+c\right)}{2a+2b+2c}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11.\left(a+b+c\right)}{2.\left(a+b+c\right)}=\frac{11}{2}\)

vậy M=11/2

22 tháng 6 2017

$M=\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab+bc+ca}{a+b+b+c+c+a}=\frac{10a+b+10b+c+10c+a}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}$M=aba+b =bcb+c =cac+a =ab+bc+caa+b+b+c+c+a =10a+b+10b+c+10c+a(a+a)+(b+b)+(c+c) 

$=\frac{\left(10a+a\right)+\left(10b+b\right)+\left(10c+c\right)}{2a+2b+2c}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11.\left(a+b+c\right)}{2.\left(a+b+c\right)}=\frac{11}{2}$=(10a+a)+(10b+b)+(1‍0c+c)2a+2b+2c =11a+11b+11c2a+2b+2c =11.(a+b+c)2.(a+b+c) =112 

vậy M=11/2

8 tháng 12 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Tính M = ab + bc + ca/ a2 + b2 + c2

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}=\frac{1}{c}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}=\frac{1}{a}\end{cases}}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)

8 tháng 12 2019

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)

=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

=> \(a=b=c\)

Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)

 Vậy \(M=1\)

2 tháng 1 2020

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath