Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)
\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)
\(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)
Ta cần c/m bất đẳng thức : \(\frac{a}{b}+\frac{b}{a}>=2\)
Nhân ab vào 2 vế ta có:
\(\left(\frac{a}{b}+\frac{b}{a}\right).ab>=2ab=>\frac{a^2b}{b}+\frac{b^2a}{a}>=2ab=>a^2+b^2>=2ab\)
\(=>a^2+b^2-2ab>=0=>\left(a-b\right)^2>=0\)
=>bất đẳng thức đúng với mọi a;b
chứng minh tương tự với \(\frac{b}{c}+\frac{c}{b}>=2;\frac{a}{c}+\frac{c}{a}>=2\);Cộng từng vế các BĐT,ta thu được:
\(S_1+S_2+S_3>=2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\) (đpcm)
S1 + S2 + S3 = \(\left(\frac{b}{a}.x+\frac{c}{d}.z\right)\) + \(\left(\frac{a}{b}.x+\frac{c}{b}.y\right)\) + \(\left(\frac{d}{c}.z+\frac{b}{c}.y\right)\)
\(=\left(\frac{b}{a}+\frac{a}{b}\right).x+\left(\frac{c}{d}+\frac{d}{c}\right).z+\left(\frac{c}{b}+\frac{b}{c}\right).y\ge2\left(x+y+z\right)=2.5=10\)
Vì \(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2;\left(\frac{c}{d}+\frac{d}{c}\right)\ge2;\left(\frac{c}{b}+\frac{b}{c}\right)\ge2\)
Vậy ........ dấu = xảy ra khi a = b = c = d
ta có tổng của hai số nghich dao luon lon hoac bang 2
lấyS1+S2+S3=
̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016
vậy S1+S2+S3 lớn hơn hoặc bằng 2016
ta có tổng của hai số nghich dao luon lon hoac bang 2
lấyS1+S2+S3=
̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016
vậy S1+S2+S3 lớn hơn hoặc bằng 2016
\(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)
\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)
\(=\left(\frac{b}{a}+\frac{a}{b}\right)x+\left(\frac{c}{b}+\frac{b}{c}\right)y+\left(\frac{c}{a}+\frac{a}{c}\right)z\)
(*)Ta cần CM bất đẳng thức sau: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Nhân ab vào 2 vế,ta được:
\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\Rightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Rightarrow a^2+b^2\ge2ab\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\left(a-b\right)^2\ge0\)
=>BĐT đúng với mọi a;b
Tương tự,ta cũng có: \(\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
Do đó \(S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.1008=2016\left(đpcm\right)\)