K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)

\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)

Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)

2) Ta có:

29 + 299

= 29.(1 + 290)

 

= 512.(1 + 280.210)

= 512.[1 + (220)4.1024]

= 512.[1 + (...26)4.2014)]

= 512.[1 + (...26).1024]

= 512.[1 + (...24)]

= 512.(...25)

= 128.4.(...25)

= 128.(...00)

= (...00) \(⋮100\)

Chứng tỏ \(2^9+2^{99}⋮100\)

23 tháng 9 2016

Bài 1:

\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)

Vậy ........

 

10 tháng 12 2016

Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn

 

10 tháng 12 2016

1. Xét 32^9 và 18^13

ta có 32^9=(2^5)^9=2^45

18^13>16^13=(2^4)^13=2^52

vì 18^13>2^52>2^45 nên 18^13>32^9

2.

a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)

Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)

mà A có tcung là 5 nên A \(⋮\)5

A có tổng các cso là 9 nên A\(⋮\)9

vậy A \(⋮\)45

d, bn xem có sai đề ko nhé

3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)

x+y+z=1/2 hoặc -1/2

còn lai bn tự tính nhé

30 tháng 12 2018

bài 1 

a)Số tận cùng là 6 nha

9 tháng 9 2018

a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)

\(\Leftrightarrow x+3=7x+35\)

\(\Leftrightarrow-6x=32\)

\(\Leftrightarrow x=-\frac{16}{3}\)

b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)

\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)

\(\Leftrightarrow6x-3=-6x-10\)

\(\Leftrightarrow12x=-7\)

\(\Leftrightarrow x=-\frac{7}{12}\)

9 tháng 9 2018

c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)

\(\Leftrightarrow\left(x+1\right)^2=6^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)

d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)

\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)

\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)

\(\Leftrightarrow2x=2\Leftrightarrow x=1\)

23 tháng 4 2020

1. \(\frac{x+2}{5}=\frac{3x-2}{2}\)

=> 2(x + 2) = 5(3x - 2)

=> 2x + 4 = 15x - 10

=> 2x - 15x = -10 - 4

=> -13x = -14

=> x = 13/4

23 tháng 4 2020

Bài 1: \(\frac{x+2}{5}=\frac{3x-2}{2}\)

<=> 2x+4=15x-10

<=> 2x-15x=-10-4

<=> -13x=-14

<=> x=\(\frac{14}{13}\)

Bài 2: xy+2x+y=0

<=> (xy+2x)+(y+2)=2

<=> x(y+2)+(y+2)=2

<=> (y+2)(x+1)=2

Vì x,y nguyên => y+2; x+1 nguyên => y+2; x+1 nguyên 

=> y+2; x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

ta có bảng

x+1-2-112
x-3-201
y+2-1-221
y-3-40-1
6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha