Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:\(F(x)=\int (2x-3)\ln xdx\)
Đặt \(\left\{\begin{matrix} u=\ln x\\ dv=(2x-3)dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ v=\int (2x-3)dx=x^2-3x\end{matrix}\right.\)
Do đó:
\(F(x)=\int (2x-3)\ln xdx=(x^2-3x)\ln x-\int (x^2-3x).\frac{dx}{x}\)
\(=(x^2-3x)\ln x-\int (x-3)dx=(x^2-3x)\ln x-(\frac{x^2}{2}-3x)+c\)
Với \(x=1\)
\(F(1)=\frac{5}{2}+c=0\Rightarrow c=\frac{-5}{2}\)
Vậy \(F(x)=(x^2-3x)\ln x-\frac{x^2}{2}+3x-\frac{5}{2}\)
\(\Rightarrow 2F(x)+x^2-6x+5=2(x^2-3x)\ln x-x^2+6x-5+x^2-6x+5\)
\(=2(x^2-3x)\ln x=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\\ x=1\end{matrix}\right.\)
Tức là pt có 3 nghiệm.
Lời giải:
Vì \(ABCD.A'B'C'D'\) là hình hộp nên ta có các điều sau:
\( \overrightarrow{AB}=\overrightarrow {DC}\Leftrightarrow (1,1,1)=(x_C-1,y_C+1,z_C-1)\Leftrightarrow (x_C,y_C,z_C)=(2,0,2)\)
Ta tìm được tọa độ điểm \(C\)
Tiếp tục có
\( \overrightarrow{DD'}=\overrightarrow {CC'}\Leftrightarrow (x_{D'}-1,y_{D'}+1,z_{D '}-1)=(2,5,-7)\Leftrightarrow (x_{D'},y_{D'},z_{D'})=(3,4,-6)\)
Ta tìm được tọa độ điểm \(D'\)
\( \overrightarrow{AD}=\overrightarrow {A'D'}\Leftrightarrow (0,-1,0)=(3-x_{A'},4-y_{A'},-6-z_{A '})\Leftrightarrow (x_{A'},y_{A'},z_{A'})=(3,5,-6)\)
Ta tìm được tọa độ điểm \(A'\)
\( \overrightarrow{AA'}=\overrightarrow {BB'}\Leftrightarrow (2,5,-7)=(x_{B'}-2,y_{B'}-1,z_{B '}-2)\Leftrightarrow (x_{B'},y_{B'},z_{B'})=(4,6,-5)\)
Ta tìm được tọa độ điểm \(B'\)
1.
Gọi \(M\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y;-3-z\right)\\\overrightarrow{MB}=\left(-2-x;-y;2-z\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}=\overrightarrow{MB}\Rightarrow\left\{{}\begin{matrix}2-2x=-2-x\\4-2y=-y\\-6-2z=2-z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\\z=-8\end{matrix}\right.\) \(\Rightarrow M\left(4;4;-8\right)\)
2.
Ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;2;-4\right)\\\overrightarrow{AC}=\left(0;1;c-2\right)\end{matrix}\right.\)
Tam giác ABC vuông tại A \(\Rightarrow AB\perp AC\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
\(\Rightarrow-2.0+2.1-4\left(c-2\right)=0\)
\(\Rightarrow c=\dfrac{5}{2}\)
Vậy \(C\left(1;0;\dfrac{5}{2}\right)\)
ìninity
\(\infty\)là vô tận
infinity