K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

a.Gọi giao của AC và BD là O , do hai đường chéo vuông góc

=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m )

mik chỉ làm được ý a thôi 

xin lỗi bạn

17 tháng 8 2021

bạn giỏi thật mik còn ko làm dc câu a đây :((((

 

 

5 tháng 4 2019

a) Sử dụng Pytago

b) Áp dụng a)

19 tháng 7 2017

Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O

\(AB^2=0A^2+OB^2\)

\(CD^2=OC^2+OD^2\)

\(AD^2=OA^2+OD^2\)

\(BC^2=OB^2+OC^2\)

\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)

\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)

Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)

20 tháng 7 2018
Bài 3 mình làm được rồi, có phải bằng 10cm ko vậy ạ?
3 tháng 9 2016

Gọi giao của AC và BD là O , do hai đường chéo vuông góc 
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O 
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1) 
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2) 
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3) 
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4) 
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5) 
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6) 
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 ( dpcm ) 

Mình làm đúng không các bạn ??? Đúng thì nha !!

3 tháng 9 2016

bởi vì đó là hình vuông

9 tháng 8 2017

a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2 
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2 
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành 

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có: 
NP // BD và NP = BD/2 
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP 

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông) 

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD 
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau 
-------------

Nguồn:__|nobita|__

cách 2

a) Gọi QM giao AC tại F,AC giao BD tại K 
ta có QM là đường trung bình của tam giác ADB 
suy ra: QM// DB 
ta có MN là đường trung bình của tam giác ABC 
suy ra: MN// AC 
ta có PN là đường trung bình của tam giác BCD 
suy ra: PN// DB 
ta có PQ là đường trung bình của tam giác ADC 
suy ra: PQ// AC 
từ đó ta có : QM//PN(cùng song song DB) 
MN//PQ(cùng song song AC) 
suy ra MNPQ là hình bình hành 
QM//DB suy ra:góc AKB=góc AFM=90 độ 
MN//AC suy ra:góc AFM= góc FMN= 90 độ 
hình bình hành MNPQ có góc FMN=90 độ 
suy ra MNPQ là hình chữ nhật 
b)thuận:giả sử 
MNPQ là hình vuông 
suy ra MN=QM 
ta có MN là đường trung bình của tam giác ABC 
suy ra MN=1/2*AC 
ta có QM là đường trung bình của tam giác ADC 
suy ra QM=1/2*BD 
MN=QM 
suy ra BD= AC 
vậy tứ giác ABCD cần thêm điều kiện là AC=BD để MNPQ là hình vuông 

9 tháng 8 2017

thanks bạn mình k rùi đó

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà