Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chu vi của tam giác abc là :
ab+bc+c=25 (1)
chu vi của tam giác acd là :
ac+cd+da=27 (2)
chu vi của tứ giác abcd là :
ab+cd+bc+da=32 (3)
từ (1) và(2) ta có :
ab+bc+ac+ac+cd+da=25+27=52 (4)
=>(ab+bc+cd+da)+2ac=52
từ (1)và(4) <=>32+2ac=52
=>2ac=52-32=20
=>ac=20:2=10
vậy ac=10cm
a.Gọi giao của AC và BD là O , do hai đường chéo vuông góc
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m )
xin lỗi bạn
Theo cách đặt giao của AC, BD là O của bạn Khôi thì phần 1 có thể CM như sau:
Áp dụng công thức BĐT trong tam giác thì:
\(AD< AO+OD\)
\(BC< BO+OC\)
Cộng theo vế 2 BĐT trên:
\(AD+BC< AO+CO+BO+DO=AC+BD\)
Còn đoạn "Theo câu 1 thì AC < p và BD < p$ là không có cơ sở em nhé.
Có: AB+ BC+ AC= 25 (1)
AD+ DC+ AC= 27 (2)
Cộng (1) và (2), ta có: AB+ BC+ AD+ DC+ 2AC= 52
mà AB+ BC+ AD+ DC= 32 (chu vi hình tứ giác)
=>2AC= 52 - 32= 20 => AC= 10