K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

Nhân cả 2 vế với y vào phương trình (2) ta được

\(\begin{cases} 8(xy)^3+27=18y^3\\ 4(xy)^2+6xy=y^3 \end{cases} \Rightarrow 8(xy)^3+27=18\left[4(xy)^2+6xy\right]\)

Đây là phương trình bậc 3 ẩn xy.

NV
3 tháng 11 2019

Nhận thấy \(x=0\) ; \(y=0\) ko phải nghiệm của hệ

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2xy+3\right)\left(4x^2y^2-6xy+9\right)=18y^3\\2x\left(2xy+3\right)=y^2\end{matrix}\right.\)

Chia vế cho vế:

\(\frac{4x^2y^2-6xy+9}{2x}=18y\Rightarrow4x^2y^2-6xy+9=36xy\)

\(\Rightarrow4x^2y^2-42xy+9=0\)

Nghiệm xấu quá, bạn tự giải nốt :(

9 tháng 9 2017

+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.

+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :

a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0

⇒ phương trình trên là phương trình đường tròn.

+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :

a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0

⇒ phương trình trên không là phương trình đường tròn.

+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :

a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0

⇒ phương trình trên không là phương trình đường tròn.

23 tháng 8 2017

P=\(X^2+2Y^2-2XY+8X+8Y+2017\)

P=\(\dfrac{4X^2+8Y^2-8XY+32Y+32X+8068}{4}\)

P=\(\dfrac{(\sqrt{3}X)^2-2.\sqrt{3}X.\dfrac{4}{\sqrt{3}}Y+\left(\dfrac{4}{\sqrt{3}}Y\right)^2-\left(\dfrac{4}{\sqrt{3}}Y\right)^2+8Y^2+X^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+\dfrac{8}{3}Y^2+32X+32Y+8068}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+X^2+2.X.16+16^2+(\dfrac{2\sqrt{2}}{\sqrt{3}}Y)^2+2.\dfrac{2\sqrt{2}}{\sqrt{3}}Y.4\sqrt{6}+\left(4\sqrt{6}\right)^2+7716}{4}\)

P=\(\dfrac{\left(\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y\right)^2+\left(X+16\right)^2+\left(\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}\right)^2}{4}+1929\ge1929\forall X\in R\)

DẤU = XẢY RA \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}X-\dfrac{4}{\sqrt{3}}Y=0\\X+16=0\\\dfrac{2\sqrt{2}}{\sqrt{3}}Y+4\sqrt{6}=0\end{matrix}\right.\)

NV
5 tháng 7 2020

a/ \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-5\right)^2\ge0\\\left(x-y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)^2+\left(y-5\right)^2+\left(x-y+4\right)^2\ge0\)

\(A_{min}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

b/ \(B=x^2y^2-6xy+9+x^2+4x+4-16\)

\(B=\left(xy-3\right)^2+\left(x+2\right)^2-16\ge-16\)

\(B_{min}=-16\) khi \(\left\{{}\begin{matrix}x=-2\\y=-\frac{3}{2}\end{matrix}\right.\)

c/ \(C=x^2+\frac{y^2}{4}+16+xy+8x+4y+\frac{59}{4}y^2-3y+2001\)

\(C=\left(x+\frac{y}{2}+4\right)^2+\frac{59}{4}\left(y-\frac{6}{59}\right)^2+\frac{118050}{59}\ge\frac{118050}{59}\)

\(C_{min}=\frac{118050}{59}\)

d/ \(D=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+36\)

\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)\)

\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]\ge2.3=6\)

\(D_{min}=6\)

e/ \(E=a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3b}{2}+\frac{3b^2}{4}-\frac{3b}{2}+2014-\frac{9}{4}\)

\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2011\ge2011\)

\(E_{min}=2011\)